A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis of linear polarization or the orientation of elliptical polarization) is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations. Thus it is an example of circular birefringence, as is optical activity, but involves a material only having this property in the presence of a magnetic field.
Circular birefringence, involving a difference in propagation between opposite circular polarizations, is distinct from linear birefringence (or simply birefringence, when the term is not further specified) which also transforms a wave's polarization but not through a simple rotation.
The polarization state is rotated in proportion to the applied longitudinal magnetic field according to:
where is the angle of rotation (in radians),
is the magnetic flux density in the direction of propagation (in teslas),
is the length of the path (in metres) where the light and magnetic field interact, and
is the Verdet constant for the material. This empirical proportionality constant (in units of radians per tesla per metre, rad/(T·m)) varies with wavelength and temperature and is tabulated for various materials.
Faraday rotation is a rare example of non-reciprocal optical propagation. Although reciprocity is a basic tenet of electromagnetics, the apparent non-reciprocity in this case is a result of not considering the static magnetic field but only the resulting device. Unlike the rotation in an optically active medium such as a sugar solution, reflecting a polarized beam back through the same Faraday rotator does not undo the polarization change the beam underwent in its forward pass through the medium, but actually doubles it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials (including liquids) under the influence of magnetic fields.
In engineering, oscillatory instabilities and resonances are often considered undesirable flow features and measures are taken to avoid them. This may include avoiding certain parametric regions or implementing control and mitigation strategies. However, t ...
We used magnetohydrodynamical cosmological simulations to investigate the cross-correlation between different observables (i.e. X-ray emission, Sunyaev-Zeldovich (SZ) signal at 21 cm, HI temperature decrement, diffuse synchrotron emission, and Faraday Rota ...
We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms inv ...