Banded iron formations (BIFs; also called banded ironstone formations) are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness and extend laterally for several hundred kilometers. Almost all of these formations are of Precambrian age and are thought to record the oxygenation of the Earth's oceans. Some of the Earth's oldest rock formations, which formed about (Ma), are associated with banded iron formations.
Banded iron formations are thought to have formed in sea water as the result of oxygen production by photosynthetic cyanobacteria. The oxygen combined with dissolved iron in Earth's oceans to form insoluble iron oxides, which precipitated out, forming a thin layer on the ocean floor. Each band is similar to a varve, resulting from cyclic variations in oxygen production.
Banded iron formations were first discovered in northern Michigan in 1844. Banded iron formations account for more than 60% of global iron reserves and provide most of the iron ore presently mined. Most formations can be found in Australia, Brazil, Canada, India, Russia, South Africa, Ukraine, and the United States.
A typical banded iron formation consists of repeated, thin layers (a few millimeters to a few centimeters in thickness) of silver to black iron oxides, either magnetite (Fe3O4) or hematite (Fe2O3), alternating with bands of iron-poor chert, often red in color, of similar thickness. A single banded iron formation can be up to several hundred meters in thickness and extend laterally for several hundred kilometers.
Banded iron formation is more precisely defined as chemically precipitated sedimentary rock containing greater than 15% iron. However, most BIFs have a higher content of iron, typically around 30% by mass, so that roughly half the rock is iron oxides and the other half is silica. The iron in BIFs is divided roughly equally between the more oxidized ferric form, Fe(III), and the more reduced ferrous form, Fe(II), so that the ratio Fe(III)/Fe(II+III) typically varies from 0.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Early Earth's Paleoproterozoic era when the Earth's atmosphere and the shallow ocean first experienced a rise in the concentration of oxygen. This began approximately 2.460–2.426 Ga (billion years) ago, during the Siderian period, and ended approximately 2.060 Ga, during the Rhyacian.
Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the form of magnetite (Fe3O4, 72.4% Fe), hematite (Fe2O3, 69.9% Fe), goethite (FeO(OH), 62.9% Fe), limonite (FeO(OH)·n(H2O), 55% Fe) or siderite (FeCO3, 48.2% Fe). Ores containing very high quantities of hematite or magnetite, typically greater than about 60% iron, are known as natural ore or direct shipping ore, and can be fed directly into iron-making blast furnaces.
The Proterozoic (ˌproʊtərəˈzoʊɪk,prɒt-,-əroʊ-,-trə-,-troʊ-) is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Mya, the longest eon of the Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon". The Proterozoic is subdivided into three geologic eras (from oldest to youngest): the Paleoproterozoic, Mesoproterozoic and Neoproterozoic.
Explores the process of iron oxidation, covering abiotic and microbial oxidation mechanisms, microbial diversity, and ecological significance.
Explores water quality modeling, focusing on reaction kinetics, equilibrium constants, and temperature effects, with practical examples of calcite precipitation and iron oxidation.
Explores challenges in defining types of iron and historical origins in gameplay.
Via Diala is a proposal to rehabilitate and give new importance to a series of mineral springs around the town of Scuol in the Engadin. The different interventions are conceived in the continuity of the theoretical research Natural Design – cultivating an ...
2023
,
Electrofacies using well logs play a vital role in reservoir characterization. Often, they are sorted into clusters according to the self-similarity of input logs and do not capture the known underlying physical process. In this paper, we propose an unsupe ...
SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA2023
, , ,
In this study, MS2 bacteriophage was inactivated by homogeneous and heterogeneous photo-Fenton processes in an alkaline matrix (pH 8) using low concentrations of H2O2 and iron forms (1 mg/L), including Fe(II), Fe(III), and Fe (hydr)oxides. As a reference, ...