LinearizabilityIn concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events, that may be extended by adding response events such that: The extended list can be re-expressed as a sequential history (is serializable). That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return.
Lock (computer science)In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications. Generally, locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data.
Priority inversionIn computer science, priority inversion is a scenario in scheduling in which a high priority task is indirectly superseded by a lower priority task effectively inverting the assigned priorities of the tasks. This violates the priority model that high-priority tasks can only be prevented from running by higher-priority tasks. Inversion occurs when there is a resource contention with a low-priority task that is then preempted by a medium-priority task.
Concurrent computingConcurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A concurrent system is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming.
Rate-monotonic schedulingIn computer science, rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority. These operating systems are generally preemptive and have deterministic guarantees with regard to response times. Rate monotonic analysis is used in conjunction with those systems to provide scheduling guarantees for a particular application.
DeadlockIn concurrent computing, deadlock is any situation in which no member of some group of entities can proceed because each waits for another member, including itself, to take action, such as sending a message or, more commonly, releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, because in these contexts systems often use software or hardware locks to arbitrate shared resources and implement process synchronization.
Semaphore (programming)In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed (for example, incremented or decremented, or toggled) depending on programmer-defined conditions.
Mutual exclusionIn computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory.
Compare-and-swapIn computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value. This is done as a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-date information; if the value had been updated by another thread in the meantime, the write would fail.
SpinlockIn software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on (the one that holds the lock) blocks or "goes to sleep".