Concept

Transcription coregulator

Summary
In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. Transcription coregulators that activate gene transcription are referred to as coactivators while those that repress are known as corepressors. The mechanism of action of transcription coregulators is to modify chromatin structure and thereby make the associated DNA more or less accessible to transcription. In humans several dozen to several hundred coregulators are known, depending on the level of confidence with which the characterisation of a protein as a coregulator can be made. One class of transcription coregulators modifies chromatin structure through covalent modification of histones. A second ATP dependent class modifies the conformation of chromatin. Nuclear DNA is normally tightly wrapped around histones rendering the DNA inaccessible to the general transcription machinery and hence this tight association prevents transcription of DNA. At physiological pH, the phosphate component of the DNA backbone is deprotonated which gives DNA a net negative charge. Histones are rich in lysine residues which at physiological pH are protonated and therefore positively charged. The electrostatic attraction between these opposite charges is largely responsible for the tight binding of DNA to histones. Many coactivator proteins have intrinsic histone acetyltransferase (HAT) catalytic activity or recruit other proteins with this activity to promoters. These HAT proteins are able to acetylate the amine group in the sidechain of histone lysine residues which makes lysine much less basic, not protonated at physiological pH, and therefore neutralizes the positive charges in the histone proteins. This charge neutralization weakens the binding of DNA to histones causing the DNA to unwind from the histone proteins and thereby significantly increases the rate of transcription of this DNA. Many corepressors can recruit histone deacetylase (HDAC) enzymes to promoters.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
PHYS-301: Biophysics : physics of the cell
In this course we will study the cell (minimum unit of life) and its components. We will study several key cellular features: Membranes, genomes, channels and receptors. We will apply the laws of phys
CH-312: Dynamics of biomolecular processes
In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.
Show more