En mathématiques, un groupe de Witt sur un corps commutatif, nommé d'après Ernst Witt, est un groupe abélien dont les éléments sont représentés par des formes bilinéaires symétriques sur ce corps.
Considérons un corps commutatif k. Tous les espaces vectoriels considérés ici seront implicitement supposés de dimension finie. On dit que deux formes bilinéaires symétriques sont équivalentes si on peut obtenir l'une à partir de l'autre en additionnant 0 ou plusieurs copies d'un (forme bilinéaire symétrique non dégénérée en dimension 2 avec un vecteur de norme nulle). Le théorème de Witt garantit qu'il s'agit bien d'une relation d'équivalence.
Le groupe de Witt sur k est le groupe abélien des classes d'équivalence des formes bilinéaires symétriques non dégénérées, avec la première loi qui correspond à la somme orthogonale directe des formes. Dans ce groupe, tout élément d'ordre fini a pour ordre une puissance de 2. La hauteur du corps k est définie comme l'exposant du sous-groupe de torsion de son groupe de Witt. (Si le niveau du corps est fini, la hauteur est son double.)
Le groupe de Witt sur k peut être enrichi d'une structure d'anneau commutatif, en utilisant le produit tensoriel de deux formes bilinéaires pour la seconde loi. Cet anneau est parfois appelé l'anneau de Witt sur k, bien que le terme d'anneau de Witt est aussi parfois utilisé pour désigner un anneau complètement différent : celui des vecteurs de Witt.
Deux corps commutatifs sont dits Witt-équivalents si leurs anneaux de Witt sont isomorphes.
Deux corps de nombres K et L sont Witt-équivalents si et seulement s'il existe une bijection T entre K et L et un isomorphisme de groupes t entre leurs , qui préserve les symboles de Hilbert de degré 2. Dans ce cas, le couple (T, t) est appelé une équivalence réciproque ou une équivalence des symboles de Hilbert de degré 2. Plusieurs variantes et extensions de ces conditions ont été étudiées ; voir les références pour plus de précisions.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.
NOTOC Ernst Witt ( à Als - à Hambourg) est un mathématicien allemand. Son père étant missionnaire, il part en Chine pour ne revenir en Europe qu'en 1920. Il étudie à l'université de Fribourg-en-Brisgau. Il s'inscrit aux SA en 1933. En 1936 il obtient, encadré par Emmy Noether à l'université de Göttingen, son doctorat dont le sujet porte sur le théorème de Riemann-Roch. Il enseigne alors jusqu'en 1937 à l'université de Hambourg. Les travaux de Witt portent surtout sur l'algèbre et les formes quadratiques.
En algèbre, le théorème de Witt est un résultat sur lequel s'appuie toute la théorie des formes quadratiques. Il permet en effet de classifier les formes quadratiques sur un corps K donné et fonde la définition du groupe de Witt de K. À proprement parler il existe plusieurs énoncés qui sont qualifiés de théorèmes de Witt : pour préciser, on les appelle théorèmes de décomposition, d'extension et d'annulation de Witt. Dans ce faisceau de résultats, obtenus par Ernst Witt en 1937, c'est le théorème d'annulation qui est le plus souvent appelé le théorème de Witt.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
We characterize the irreducible polynomials that occur as the characteristic polynomial of an automorphism of an even unimodular lattice of a given signature, generalizing a theorem of Gross and McMullen. As part of the proof, we give a general criterion i ...
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...