Bird anatomy, or the physiological structure of birds' bodies, shows many unique adaptations, mostly aiding flight. Birds have a light skeletal system and light but powerful musculature which, along with circulatory and respiratory systems capable of very high metabolic rates and oxygen supply, permit the bird to fly. The development of a beak has led to evolution of a specially adapted digestive system.
Birds have many bones that are hollow (pneumatized) with criss-crossing struts or trusses for structural strength. The number of hollow bones varies among species, though large gliding and soaring birds tend to have the most. Respiratory air sacs often form air pockets within the semi-hollow bones of the bird's skeleton. The bones of diving birds are often less hollow than those of non-diving species. Penguins, loons, and puffins are without pneumatized bones entirely. Flightless birds, such as ostriches and emus, have pneumatized femurs and, in the case of the emu, pneumatized cervical vertebrae.
The bird skeleton is highly adapted for flight. It is extremely lightweight but strong enough to withstand the stresses of taking off, flying, and landing. One key adaptation is the fusing of bones into single ossifications, such as the pygostyle. Because of this, birds usually have a smaller number of bones than other terrestrial vertebrates. Birds also lack teeth or even a true jaw and instead have a beak, which is far more lightweight. The beaks of many baby birds have a projection called an egg tooth, which facilitates their exit from the amniotic egg. It falls off once the egg has been penetrated.
The vertebral column is divided into five sections of vertebrae:
The cervical vertebrae provide structural support to the neck and number between 8 and as many as 25 vertebrae in certain swan species (Cygninae) and other long-necked birds. All cervical vertebrae have ribs attached except the first one. This vertebra (C1) is called the atlas which articulates with the occipital condyles of the skull and lacks the foramen typical of most vertebrae.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
STAY A LITTLE LONGER étudie les potentialités du bâti existant. Les outils de représentations du projet de transformation - Existant/Noir, Démolition/Jaune, Nouveau/Rouge -structureront l'exploration
STAY A LITTLE LONGER étudie les potentialités du bâti existant. Les outils de représentations du projet de transformation - Existant/Noir, Démolition/Jaune, Nouveau/Rouge -structureront l'exploration
Columbidae (kəˈlʌmbᵻdiː) is a bird family consisting of doves and pigeons. It is the only family in the order Columbiformes. These are stout-bodied birds with short necks and short slender bills that in some species feature fleshy ceres. They primarily feed on seeds, fruits, and plants. The family occurs worldwide, but the greatest variety is in the Indomalayan and Australasian realms. The family contains 344 species divided into 50 genera. Thirteen of the species are extinct.
The scientific question of within which larger group of animals birds evolved has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic Era. A close relationship between birds and dinosaurs was first proposed in the nineteenth century after the discovery of the primitive bird Archaeopteryx in Germany. Birds and extinct non-avian dinosaurs share many unique skeletal traits.
Flight feathers (Pennae volatus) are the long, stiff, asymmetrically shaped, but symmetrically paired pennaceous feathers on the wings or tail of a bird; those on the wings are called remiges ('rɛmᵻdʒiːz), singular remex ('riːmɛks), while those on the tail are called rectrices (rɛk'traɪsiːs), singular rectrix ('rɛktrɪks). The primary function of the flight feathers is to aid in the generation of both thrust and lift, thereby enabling flight.
, ,
Degradation of cementitious materials by sulfate ions is commonly classified into chemical and physical sulfate attack. So-called "physical" attack dominates in many field situations, but laboratory testing focuses on "chemical" attack under full-immersion ...
PERGAMON-ELSEVIER SCIENCE LTD2023
, , ,
PURPOSE. The avian eye is an established model for exploring mechanisms that coordinate morphogenesis and metabolism during embryonic development. Less is known, however, about trafficking of bioenergetic and metabolic signaling molecules that are involved ...
Order, regularities, and patterns are ubiquitous around us. A flock of birds maneuvering in the sky, the self-organization of social insects, a global pandemic or a traffic jam are examples of complex systems where the macroscopic patterns arise from the m ...