Power of a testIn statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis () when a specific alternative hypothesis () is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.
Medical testA medical test is a medical procedure performed to detect, diagnose, or monitor diseases, disease processes, susceptibility, or to determine a course of treatment. Medical tests such as, physical and visual exams, diagnostic imaging, genetic testing, chemical and cellular analysis, relating to clinical chemistry and molecular diagnostics, are typically performed in a medical setting. Medical tests can be classified by their purposes, the most common of which are diagnosis, screening and evaluation.
Accuracy and precisionAccuracy and precision are two measures of observational error. Accuracy is how close a given set of measurements (observations or readings) are to their true value, while precision is how close the measurements are to each other. In other words, precision is a description of random errors, a measure of statistical variability. Accuracy has two definitions: More commonly, it is a description of only systematic errors, a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this trueness.
Bayes' theoremIn probability theory and statistics, Bayes' theorem (beɪz or beɪzɪz ; alternatively Bayes' law or Bayes' rule), and occasionally Bayes's theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole.
Binary classificationBinary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule. Typical binary classification problems include: Medical testing to determine if a patient has certain disease or not; Quality control in industry, deciding whether a specification has been met; In information retrieval, deciding whether a page should be in the result set of a search or not. Binary classification is dichotomization applied to a practical situation.
Evidence-based medicineEvidence-based medicine (EBM) is "the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients". The aim of EBM is to integrate the experience of the clinician, the values of the patient, and the best available scientific information to guide decision-making about clinical management. The term was originally used to describe an approach to teaching the practice of medicine and improving decisions by individual physicians about individual patients.
Harmonic meanIn mathematics, the harmonic mean is one of several kinds of average, and in particular, one of the Pythagorean means. It is sometimes appropriate for situations when the average rate is desired. The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.