AttractorIn the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain close even if slightly disturbed. In finite-dimensional systems, the evolving variable may be represented algebraically as an n-dimensional vector. The attractor is a region in n-dimensional space.
Mandelbrot setThe Mandelbrot set (ˈmændəlbroʊt,_-brɒt) is a two dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not diverge to infinity when iterated starting at , i.e., for which the sequence , , etc., remains bounded in absolute value. This set was first defined and drawn by Robert W.
Iterated functionIn mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
Complex dynamicsComplex dynamics, or holomorphic dynamics, is the study of dynamical systems obtained by iterating a complex analytic mapping. This article focuses on the case of algebraic dynamics, where a polynomial or rational function is iterated. In geometric terms, that amounts to iterating a mapping from some algebraic variety to itself. The related theory of arithmetic dynamics studies iteration over the rational numbers or the p-adic numbers instead of the complex numbers.
Classification of Fatou componentsIn mathematics, Fatou components are components of the Fatou set. They were named after Pierre Fatou. If f is a rational function defined in the extended complex plane, and if it is a nonlinear function (degree > 1) then for a periodic component of the Fatou set, exactly one of the following holds: contains an attracting periodic point is parabolic is a Siegel disc: a simply connected Fatou component on which f(z) is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle.
Gaston JuliaGaston Maurice Julia (3 February 1893 – 19 March 1978) was a French Algerian mathematician who devised the formula for the Julia set. His works were popularized by French mathematician Benoit Mandelbrot; the Julia and Mandelbrot fractals are closely related. He founded, independently with Pierre Fatou, the modern theory of holomorphic dynamics. Julia was born in the Algerian town of Sidi Bel Abbes, at the time governed by the French. During his youth, he had an interest in mathematics and music.
Stable manifoldIn mathematics, and in particular the study of dynamical systems, the idea of stable and unstable sets or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set. The gravitational tidal forces acting on the rings of Saturn provide an easy-to-visualize physical example. The tidal forces flatten the ring into the equatorial plane, even as they stretch it out in the radial direction.
Pierre FatouPierre Joseph Louis Fatou (28 February 1878 – 9 August 1929) was a French mathematician and astronomer. He is known for major contributions to several branches of analysis. The Fatou lemma and the Fatou set are named after him. Pierre Fatou's parents were Prosper Ernest Fatou (1832-1891) and Louise Eulalie Courbet (1844-1911), both of whom were in the military. Pierre's family would have liked for him to enter the military as well, but his health was not sufficiently good for him to pursue a military career.
Periodic pointIn mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time. Given a mapping f from a set X into itself, a point x in X is called periodic point if there exists an n so that where f_n is the nth iterate of f. The smallest positive integer n satisfying the above is called the prime period or least period of the point x.
Orbit portraitIn mathematics, an orbit portrait is a combinatorial tool used in complex dynamics for understanding the behavior of one-complex dimensional quadratic maps. In simple words one can say that it is : a list of external angles for which rays land on points of that orbit graph showing above list Given a quadratic map from the complex plane to itself and a repelling or parabolic periodic orbit of , so that (where subscripts are taken 1 + modulo ), let be the set of angles whose corresponding external rays land at .