Summary
In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton. In Kaluza–Klein theories, after dimensional reduction, the effective Planck mass varies as some power of the volume of compactified space. This is why volume can turn out as a dilaton in the lower-dimensional effective theory. Although string theory naturally incorporates Kaluza–Klein theory that first introduced the dilaton, perturbative string theories such as type I string theory, type II string theory, and heterotic string theory already contain the dilaton in the maximal number of 10 dimensions. However, M-theory in 11 dimensions does not include the dilaton in its spectrum unless compactified. The dilaton in type IIA string theory parallels the radion of M-theory compactified over a circle, and the dilaton in string theory parallels the radion for the Hořava–Witten model. (For more on the M-theory origin of the dilaton, see Berman & Perry (2006).) In string theory, there is also a dilaton in the worldsheet CFT – two-dimensional conformal field theory. The exponential of its vacuum expectation value determines the coupling constant g and the Euler characteristic as for compact worldsheets by the Gauss–Bonnet theorem, where the genus g counts the number of handles and thus the number of loops or string interactions described by a specific worldsheet. Therefore, the dynamic variable coupling constant in string theory contrasts the quantum field theory where it is constant. As long as supersymmetry is unbroken, such scalar fields can take arbitrary values moduli). However, supersymmetry breaking usually creates a potential energy for the scalar fields and the scalar fields localize near a minimum whose position should in principle calculate in string theory.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related people (1)