Summary
Neural architecture search (NAS) is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par or outperform hand-designed architectures. Methods for NAS can be categorized according to the search space, search strategy and performance estimation strategy used: The search space defines the type(s) of ANN that can be designed and optimized. The search strategy defines the approach used to explore the search space. The performance estimation strategy evaluates the performance of a possible ANN from its design (without constructing and training it). NAS is closely related to hyperparameter optimization and meta-learning and is a subfield of automated machine learning (AutoML). Reinforcement learning (RL) can underpin a NAS search strategy. Barret Zoph and Quoc Viet Le applied NAS with RL targeting the CIFAR-10 dataset and achieved a network architecture that rivals the best manually-designed architecture for accuracy, with an error rate of 3.65, 0.09 percent better and 1.05x faster than a related hand-designed model. On the Penn Treebank dataset, that model composed a recurrent cell that outperforms LSTM, reaching a test set perplexity of 62.4, or 3.6 perplexity better than the prior leading system. On the PTB character language modeling task it achieved bits per character of 1.214. Learning a model architecture directly on a large dataset can be a lengthy process. NASNet addressed this issue by transferring a building block designed for a small dataset to a larger dataset. The design was constrained to use two types of convolutional cells to return feature maps that serve two main functions when convoluting an input feature map: normal cells that return maps of the same extent (height and width) and reduction cells in which the returned feature map height and width is reduced by a factor of two. For the reduction cell, the initial operation applied to the cell’s inputs uses a stride of two (to reduce the height and width).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.