Summary
Heterogeneous gold catalysis refers to the use of elemental gold as a heterogeneous catalyst. As in most heterogeneous catalysis, the metal is typically supported on metal oxide. Furthermore, as seen in other heterogeneous catalysts, activity increases with a decreasing diameter of supported gold clusters. Several industrially relevant processes are also observed such as H2 activation, Water-gas shift reaction, and hydrogenation. No gold-catalyzed reaction has been commercialized. The high activity of supported gold clusters has been proposed to arise from a combination of structural changes, quantum-size effects and support effects that preferentially tune the electronic structure of gold such that optimal binding of adsorbates during the catalytic cycle is enabled. The selectivity and activity of gold nanoparticles can be finely tuned by varying the choice of support material, with e.g. titania (TiO2), hematite (α-Fe2O3), cobalt(II/III) oxide (Co3O4) and nickel(II) oxide (NiO) serving as the most effective support materials for facilitating the catalysis of CO combustion. Besides enabling an optimal dispersion of the nanoclusters, the support materials have been suggested to promote catalysis by altering the size, shape, strain and charge state of the cluster. A precise shape control of the deposited gold clusters has been shown to be important for optimizing the catalytic activity, with hemispherical, few atomic layers thick nanoparticles generally exhibiting the most desirable catalytic properties due to maximized number of high-energy edge and corner sites. In the past, heterogeneous gold catalysts have found commercial applications for the industrial production of polyvinyl chloride (PVC), methyl methacrylate, and catalytic converters. Traditionally, PVC production uses mercury catalysts and leads to serious environmental concerns. China accounts for 50% of world's mercury emissions and 60% of China's mercury emission is caused by PVC production. Although gold catalysts are slightly expensive, overall production cost is affected by only ~1%.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
CH-421: Catalysis for energy storage
This course covers the fundamental and applied aspects of electrocatalysis related to renewable energy conversion and storage. The focus is on catalysis for hydrogen evolution, oxygen evolution, and C
ChE-410: Catalysis for emission control and energy processes
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
Related publications (289)
Related concepts (2)
Nanomaterial-based catalyst
Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles. Functionalized metal nanoparticles are more stable toward solvents compared to non-functionalized metal nanoparticles.
Nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.