Summary
The Molten-Salt Reactor Experiment (MSRE) was an experimental molten salt reactor research reactor at the Oak Ridge National Laboratory (ORNL). This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. The costs of a cleanup project were estimated at about $130 million. The MSRE was a 7.4 MWth test reactor simulating the neutronic "kernel" of a type of inherently safer epithermal thorium breeder reactor called the liquid fluoride thorium reactor. It primarily used two fuels: first uranium-235 and later uranium-233. The latter 233UF4 was the result of breeding from thorium in other reactors. Since this was an engineering test, the large, expensive breeding blanket of thorium salt was omitted in favor of neutron measurements. In the MSRE, the heat from the reactor core was shed via a cooling system using air blown over radiators. It is thought similar reactors could power high-efficiency heat engines such as closed-cycle gas turbines. The MSRE's piping, core vat and structural components were made from Hastelloy-N and its moderator was a pyrolytic graphite core. The fuel for the MSRE was LiF-BeF2-ZrF4-UF4 (65-29.1-5-0.9 mole %), the graphite core moderated it, and its secondary coolant was FLiBe (2LiF-BeF2), it operated as hot as 650 °C and operated for the equivalent of about 1.5 years of full power operation. The result promised to be a simple, reliable reactor. The purpose of the Molten-Salt Reactor Experiment was to demonstrate that some key features of the proposed molten-salt power reactors could be embodied in a practical reactor that could be operated safely and reliably and be maintained without excessive difficulty. For simplicity, it was to be a fairly small, one-fluid (i.e. non-breeding) reactor operating at 10 MWth or less, with heat rejection to the air via a secondary (fuel-free) salt. The pyrolytic graphite core, grade CGB, also served as the moderator.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.