Summary
In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicular vectors, while in combinatorial terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns. It is a consequence of this definition that the corresponding properties hold for columns as well as rows. The n-dimensional parallelotope spanned by the rows of an n×n Hadamard matrix has the maximum possible n-dimensional volume among parallelotopes spanned by vectors whose entries are bounded in absolute value by 1. Equivalently, a Hadamard matrix has maximal determinant among matrices with entries of absolute value less than or equal to 1 and so is an extremal solution of Hadamard's maximal determinant problem. Certain Hadamard matrices can almost directly be used as an error-correcting code using a Hadamard code (generalized in Reed–Muller codes), and are also used in balanced repeated replication (BRR), used by statisticians to estimate the variance of a parameter estimator. Let H be a Hadamard matrix of order n. The transpose of H is closely related to its inverse. In fact: where In is the n × n identity matrix and HT is the transpose of H. To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length . Dividing H through by this length gives an orthogonal matrix whose transpose is thus its inverse. Multiplying by the length again gives the equality above. As a result, where det(H) is the determinant of H. Suppose that M is a complex matrix of order n, whose entries are bounded by |Mij| ≤ 1, for each i, j between 1 and n. Then Hadamard's determinant bound states that Equality in this bound is attained for a real matrix M if and only if M is a Hadamard matrix.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.