In mathematics, finite field arithmetic is arithmetic in a finite field (a field containing a finite number of elements) contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers.
There are infinitely many different finite fields. Their number of elements is necessarily of the form pn where p is a prime number and n is a positive integer, and two finite fields of the same size are isomorphic. The prime p is called the characteristic of the field, and the positive integer n is called the dimension of the field over its prime field.
Finite fields are used in a variety of applications, including in classical coding theory in linear block codes such as BCH codes and Reed–Solomon error correction, in cryptography algorithms such as the Rijndael (AES) encryption algorithm, in tournament scheduling, and in the design of experiments.
The finite field with pn elements is denoted GF(pn) and is also called the Galois field of order pn, in honor of the founder of finite field theory, Évariste Galois. GF(p), where p is a prime number, is simply the ring of integers modulo p. That is, one can perform operations (addition, subtraction, multiplication) using the usual operation on integers, followed by reduction modulo p. For instance, in GF(5), 4 + 3 = 7 is reduced to 2 modulo 5. Division is multiplication by the inverse modulo p, which may be computed using the extended Euclidean algorithm.
A particular case is GF(2), where addition is exclusive OR (XOR) and multiplication is AND. Since the only invertible element is 1, division is the identity function.
Elements of GF(pn) may be represented as polynomials of degree strictly less than n over GF(p). Operations are then performed modulo R where R is an irreducible polynomial of degree n over GF(p), for instance using polynomial long division. The addition of two polynomials P and Q is done as usual; multiplication may be done as follows: compute W = P · Q as usual, then compute the remainder modulo R.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
Nowadays, the most popular public-key cryptosystems are based on either the integer factorization or the discrete logarithm problem. The feasibility of solving these mathematical problems in practice is studied and techniques are presented to speed-up the ...
EPFL2012
Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first real-world application in cryptography in the mid 1980's ...