Résumé
In mathematics, finite field arithmetic is arithmetic in a finite field (a field containing a finite number of elements) contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers. There are infinitely many different finite fields. Their number of elements is necessarily of the form pn where p is a prime number and n is a positive integer, and two finite fields of the same size are isomorphic. The prime p is called the characteristic of the field, and the positive integer n is called the dimension of the field over its prime field. Finite fields are used in a variety of applications, including in classical coding theory in linear block codes such as BCH codes and Reed–Solomon error correction, in cryptography algorithms such as the Rijndael (AES) encryption algorithm, in tournament scheduling, and in the design of experiments. The finite field with pn elements is denoted GF(pn) and is also called the Galois field of order pn, in honor of the founder of finite field theory, Évariste Galois. GF(p), where p is a prime number, is simply the ring of integers modulo p. That is, one can perform operations (addition, subtraction, multiplication) using the usual operation on integers, followed by reduction modulo p. For instance, in GF(5), 4 + 3 = 7 is reduced to 2 modulo 5. Division is multiplication by the inverse modulo p, which may be computed using the extended Euclidean algorithm. A particular case is GF(2), where addition is exclusive OR (XOR) and multiplication is AND. Since the only invertible element is 1, division is the identity function. Elements of GF(pn) may be represented as polynomials of degree strictly less than n over GF(p). Operations are then performed modulo R where R is an irreducible polynomial of degree n over GF(p), for instance using polynomial long division. The addition of two polynomials P and Q is done as usual; multiplication may be done as follows: compute W = P · Q as usual, then compute the remainder modulo R.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-489: Number theory II.c - Cryptography
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?