Summary
In the mathematical field of graph theory, a vertex-transitive graph is a graph G in which, given any two vertices v_1 and v_2 of G, there is some automorphism such that In other words, a graph is vertex-transitive if its automorphism group acts transitively on its vertices. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph). Finite vertex-transitive graphs include the symmetric graphs (such as the Petersen graph, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also vertex-transitive, as are the vertices and edges of the Archimedean solids (though only two of these are symmetric). Potočnik, Spiga and Verret have constructed a census of all connected cubic vertex-transitive graphs on at most 1280 vertices. Although every Cayley graph is vertex-transitive, there exist other vertex-transitive graphs that are not Cayley graphs. The most famous example is the Petersen graph, but others can be constructed including the line graphs of edge-transitive non-bipartite graphs with odd vertex degrees. The edge-connectivity of a vertex-transitive graph is equal to the degree d, while the vertex-connectivity will be at least 2(d + 1)/3. If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to d. Infinite vertex-transitive graphs include: infinite paths (infinite in both directions) infinite regular trees, e.g.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.