Summary
Oxygen cycle refers to the movement of oxygen through the atmosphere (air), biosphere (plants and animals) and the lithosphere (the Earth’s crust). The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O2 production) or sink (O2 consumption). Oxygen is one of the most common elements on Earth and represents a large portion of each main reservoir. By far the largest reservoir of Earth's oxygen is within the silicate and oxide minerals of the crust and mantle (99.5% by weight). The Earth's atmosphere, hydrosphere, and biosphere together hold less than 0.05% of the Earth's total mass of oxygen. Besides O2, additional oxygen atoms are present in various forms spread throughout the surface reservoirs in the molecules of biomass, H2O, CO2, HNO3, NO, NO2, CO, H2O2, O3, SO2, H2SO4, MgO, CaO, AlO, SiO2, and PO4. The atmosphere is 21% oxygen by volume, which equates to a total of roughly 34 × 1018 mol of oxygen. Other oxygen-containing molecules in the atmosphere include ozone (O3), carbon dioxide (CO2), water vapor (H2O), and sulphur and nitrogen oxides (SO2, NO, N2O, etc.). The biosphere is 22% oxygen by volume, present mainly as a component of organic molecules (CxHxNxOx) and water. The hydrosphere is 33% oxygen by volume present mainly as a component of water molecules, with dissolved molecules including free oxygen and carbolic acids (HxCO3). The lithosphere is 46.6% oxygen by volume, present mainly as silica minerals (SiO2) and other oxide minerals.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.