Dinitrogen pentoxide (also known as nitrogen pentoxide or nitric anhydride) is the chemical compound with the formula . It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.
Dinitrogen pentoxide is an unstable and potentially dangerous oxidizer that once was used as a reagent when dissolved in chloroform for nitrations but has largely been superseded by nitronium tetrafluoroborate ().
is a rare example of a compound that adopts two structures depending on the conditions. The solid is a salt, nitronium nitrate, consisting of separate nitronium cations and nitrate anions ; but in the gas phase and under some other conditions it is a covalently-bound molecule.
was first reported by Deville in 1840, who prepared it by treating silver nitrate () with chlorine.
Pure solid is a salt, consisting of separated linear nitronium ions and planar trigonal nitrate anions . Both nitrogen centers have oxidation state +5. It crystallizes in the space group D (C6/mmc) with Z = 2, with the anions in the D3h sites and the cations in D3d sites.
The vapor pressure P (in atm) as a function of temperature T (in kelvin), in the range , is well approximated by the formula
being about 48 torr at 0 °C, 424 torr at 25 °C, and 760 torr at 32 °C (9 °C below the melting point).
In the gas phase, or when dissolved in nonpolar solvents such as carbon tetrachloride, the compound exists as covalently-bonded molecules . In the gas phase, theoretical calculations for the minimum-energy configuration indicate that the angle in each wing is about 134° and the angle is about 112°. In that configuration, the two groups are rotated about 35° around the bonds to the central oxygen, away from the plane. The molecule thus has a propeller shape, with one axis of 180° rotational symmetry (C2)
When gaseous is cooled rapidly ("quenched"), one can obtain the metastable molecular form, which exothermically converts to the ionic form above −70 °C.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes. A notable example of a radical is the hydroxyl radical (HO·), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (꞉CH2) which have two unpaired electrons.
Nitrogen dioxide is a chemical compound with the formula NO2. It is one of several nitrogen oxides. NO2 is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year for use primarily in the production of fertilizers. At higher temperatures it is a reddish-brown gas. It can be fatal if inhaled in large quantities. Nitrogen dioxide is a paramagnetic, bent molecule with C2v point group symmetry. It is included in the NOx family of atmospheric pollutants.
Nitrogen-containing compounds are an important class of molecules in medicinal chemistry, chemical biology, biochemistry, material sciences or environmental sciences. Organic nitrogen occurs in many forms, ranging from small building blocks such as urea, a ...
Explores the probability of different quanta levels in ozone's vibrational degrees of freedom and the estimation of rate constants in chemical reactions.
Ozone is a commonly applied disinfectant and oxidantin drinkingwater and has more recently been implemented for enhanced municipalwastewater treatment for potable reuse and ecosystem protection. Onedrawback is the potential formation of bromate, a possible ...
Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle ...