Summary
Visual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models. As visual spatial attention mechanism allows human and/or computer vision systems to focus more on semantically more substantial regions in space, visual temporal attention modules enable machine learning algorithms to emphasize more on critical video frames in video analytics tasks, such as human action recognition. In convolutional neural network-based systems, the prioritization introduced by the attention mechanism is regularly implemented as a linear weighting layer with parameters determined by labeled training data. Recent video segmentation algorithms often exploits both spatial and temporal attention mechanisms. Research in human action recognition has accelerated significantly since the introduction of powerful tools such as Convolutional Neural Networks (CNNs). However, effective methods for incorporation of temporal information into CNNs are still being actively explored. Motivated by the popular recurrent attention models in natural language processing, the Attention-aware Temporal Weighted CNN (ATW CNN) is proposed in videos, which embeds a visual attention model into a temporal weighted multi-stream CNN. This attention model is implemented as temporal weighting and it effectively boosts the recognition performance of video representations. Besides, each stream in the proposed ATW CNN framework is capable of end-to-end training, with both network parameters and temporal weights optimized by stochastic gradient descent (SGD) with back-propagation. Experimental results show that the ATW CNN attention mechanism contributes substantially to the performance gains with the more discriminative snippets by focusing on more relevant video segments.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
EE-550: Image and video processing
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
ENG-644: Teaching STEM: a problem solving approach
Problem solving is a core engineering skill. This course explores relevant heuristics, epistemologies, metacognitive skills and evidence-informed teaching strategies for developing problem solving ski
ENG-644(a): Teaching STEM: a problem solving approach - FALL
Problem solving is a core engineering skill. This course explores relevant heuristics, epistemologies, metacognitive skills and evidence-informed teaching strategies for developing problem solving ski
Show more
Related publications (128)
Related concepts (5)
Salience (neuroscience)
Salience (also called saliency) is that property by which some thing stands out. Salient events are an attentional mechanism by which organisms learn and survive; those organisms can focus their limited perceptual and cognitive resources on the pertinent (that is, salient) subset of the sensory data available to them. Saliency typically arises from contrasts between items and their neighborhood. They might be represented, for example, by a red dot surrounded by white dots, or by a flickering message indicator of an answering machine, or a loud noise in an otherwise quiet environment.
Visual spatial attention
Visual spatial attention is a form of visual attention that involves directing attention to a location in space. Similar to its temporal counterpart visual temporal attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models. Spatial attention allows humans to selectively process visual information through prioritization of an area within the visual field.
Activity recognition
Activity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.
Show more