Concept

Category theory

Related concepts (31)
Higher category theory
In mathematics, higher category theory is the part of at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental . An ordinary has and morphisms, which are called 1-morphisms in the context of higher category theory.
Categorical logic
NOTOC Categorical logic is the branch of mathematics in which tools and concepts from are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a , and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.
Strict 2-category
In , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.
Dual (category theory)
In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
Section (category theory)
In , a branch of mathematics, a section is a right inverse of some morphism. , a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of . Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms.
Opposite category
In , a branch of mathematics, the opposite category or dual category Cop of a given C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, . An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤op by x ≤op y if and only if y ≤ x.
Enriched category
In , a branch of mathematics, an enriched category generalizes the idea of a by replacing hom-sets with objects from a general . It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an in some fixed monoidal category of "hom-objects".
Bicategory
In mathematics, a bicategory (or a weak 2-category) is a concept in used to extend the notion of to handle the cases where the composition of morphisms is not (strictly) associative, but only associative up to an isomorphism. The notion was introduced in 1967 by Jean Bénabou. Bicategories may be considered as a weakening of the definition of 2-categories. A similar process for 3-categories leads to , and more generally to for . Formally, a bicategory B consists of: a, b, ... called 0-cells; morphisms f, g, .
Product category
In the mathematical field of , the product of two C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors. The product category C × D has: as : pairs of objects (A, B), where A is an object of C and B of D; as arrows from (A1, B1) to (A2, B2): pairs of arrows (f, g), where f : A1 → A2 is an arrow of C and g : B1 → B2 is an arrow of D; as composition, component-wise composition from the contributing categories: (f2, g2) o (f1, g1) = (f2 o f1, g2 o g1); as identities, pairs of identities from the contributing categories: 1(A, B) = (1A, 1B).
Higher-dimensional algebra
In mathematics, especially () , higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra. Category theory#Higher-dimensional categories A first step towards defining higher dimensional algebras is the concept of of , followed by the more 'geometric' concept of double category. A higher level concept is thus defined as a of categories, or super-category, which generalises to higher dimensions the notion of – regarded as any structure which is an interpretation of Lawvere's axioms of the elementary theory of abstract categories (ETAC).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.