A radome (a portmanteau of radar and dome) is a structural, weatherproof enclosure that protects a radar antenna. The radome is constructed of material transparent to radio waves. Radomes protect the antenna from weather and conceal antenna electronic equipment from view. They also protect nearby personnel from being accidentally struck by quickly rotating antennas. Radomes can be constructed in several shapes - spherical, geodesic, planar, etc. - depending on the particular application, using various construction materials such as fiberglass, polytetrafluoroethylene (PTFE)-coated fabric, and others. When found on fixed-wing aircraft with forward-looking radar, as are commonly used for object or weather detection, the nose cones often additionally serve as radomes. On aircraft used for airborne early warning and control (AEW&C), a rotating radome, often called a "rotodome", is mounted on the top of the fuselage for 360-degree coverage. Some newer AEW&C configurations instead use three antenna modules inside a radome, usually mounted on top of the fuselage, for 360-degree coverage, such as the Chinese KJ-2000 and Indian DRDO AEW&Cs. On rotary-wing and fixed-wing aircraft using microwave satellite for beyond-line-of-sight communication, radomes often appear as blisters on the fuselage. In addition to protection, radomes also streamline the antenna system, thus reducing drag. The air supported radome built by Walter Bird in 1948 at the Cornell Aeronautical Laboratory is the first pneumatic construction built in history. A radome is often used to prevent ice and freezing rain from accumulating on antennas. In the case of a spinning radar parabolic antenna, the radome also protects the antenna from debris and rotational irregularities due to wind. Its shape is easily identified by its hardshell, which has strong properties against being damaged. For stationary antennas, excessive amounts of ice can de-tune the antenna to the point where its impedance at the input frequency rises drastically, causing the voltage standing wave ratio (VSWR) to rise as well.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.