Concept

Trigonometric polynomial

In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(nx) and cos(nx) with n taking on the values of one or more natural numbers. The coefficients may be taken as real numbers, for real-valued functions. For complex coefficients, there is no difference between such a function and a finite Fourier series. Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to the interpolation of periodic functions. They are used also in the discrete Fourier transform. The term trigonometric polynomial for the real-valued case can be seen as using the analogy: the functions sin(nx) and cos(nx) are similar to the monomial basis for polynomials. In the complex case the trigonometric polynomials are spanned by the positive and negative powers of eix, Laurent polynomials in z under the change of variables z = eix. Any function T of the form with for , is called a complex trigonometric polynomial of degree N. Using Euler's formula the polynomial can be rewritten as Analogously, letting and or , then is called a real trigonometric polynomial of degree N. A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of 2pi, or as a function on the unit circle. A basic result is that the trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; this is a special case of the Stone–Weierstrass theorem. More concretely, for every continuous function f and every ε > 0, there exists a trigonometric polynomial T such that |f(z) − T(z)| < ε for all z. Fejér's theorem states that the arithmetic means of the partial sums of the Fourier series of f converge uniformly to f, provided f is continuous on the circle, thus giving an explicit way to find an approximating trigonometric polynomial T. A trigonometric polynomial of degree N has a maximum of 2N roots in any interval with a in R, unless it is the zero function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.