Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Abelian categoryIn mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.
Enriched categoryIn , a branch of mathematics, an enriched category generalizes the idea of a by replacing hom-sets with objects from a general . It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an in some fixed monoidal category of "hom-objects".
Direct sumThe direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise.
CokernelThe cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f. Cokernels are to the , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain).
Additive categoryIn mathematics, specifically in , an additive category is a C admitting all finitary biproducts. There are two equivalent definitions of an additive category: One as a category equipped with additional structure, and another as a category equipped with no extra structure but whose objects and morphisms satisfy certain equations. A category C is preadditive if all its hom-sets are abelian groups and composition of morphisms is bilinear; in other words, C is over the of abelian groups.
Zero morphismIn , a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Suppose C is a , and f : X → Y is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any W in C and any g, h : W → X, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h : Y → Z, gf = hf. A zero morphism is one that is both a constant morphism and a coconstant morphism.
CoequalizerIn , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g.
Yoneda lemmaIn mathematics, the Yoneda lemma is arguably the most important result in . It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the of any into a (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category.
BiproductIn and its applications to mathematics, a biproduct of a finite collection of , in a with zero objects, is both a and a coproduct. In a the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules. Let C be a with zero morphisms. Given a finite (possibly empty) collection of objects A1, ...