L-theoryIn mathematics, algebraic L-theory is the K-theory of quadratic forms; the term was coined by C. T. C. Wall, with L being used as the letter after K. Algebraic L-theory, also known as "Hermitian K-theory", is important in surgery theory. One can define L-groups for any ring with involution R: the quadratic L-groups (Wall) and the symmetric L-groups (Mishchenko, Ranicki). The even-dimensional L-groups are defined as the Witt groups of ε-quadratic forms over the ring R with .
Immersion (mathematics)In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
HandlebodyIn the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds. Handles are used to particularly study 3-manifolds. Handlebodies play a similar role in the study of manifolds as simplicial complexes and CW complexes play in homotopy theory, allowing one to analyze a space in terms of individual pieces and their interactions.
Handle decompositionIn mathematics, a handle decomposition of an m-manifold M is a union where each is obtained from by the attaching of -handles. A handle decomposition is to a manifold what a CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an i-handle is the smooth analogue of an i-cell. Handle decompositions of manifolds arise naturally via Morse theory.
Geometric topologyIn mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.
Stable normal bundleIn surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak. Given an embedding of a manifold in Euclidean space (provided by the theorem of Hassler Whitney), it has a normal bundle.
Surgery exact sequenceIn the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension . The surgery structure set of a compact -dimensional manifold is a pointed set which classifies -dimensional manifolds within the homotopy type of . The basic idea is that in order to calculate it is enough to understand the other terms in the sequence, which are usually easier to determine.
Surgery obstructionIn mathematics, specifically in surgery theory, the surgery obstructions define a map from the normal invariants to the L-groups which is in the first instance a set-theoretic map (that means not necessarily a homomorphism) with the following property when : A degree-one normal map is normally cobordant to a homotopy equivalence if and only if the image in . The surgery obstruction of a degree-one normal map has a relatively complicated definition. Consider a degree-one normal map .
Exotic sphereIn an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere.
Poincaré spaceIn algebraic topology, a Poincaré space is an n-dimensional topological space with a distinguished element μ of its nth homology group such that taking the cap product with an element of the kth cohomology group yields an isomorphism to the (n − k)th homology group. The space is essentially one for which Poincaré duality is valid; more precisely, one whose singular chain complex forms a Poincaré complex with respect to the distinguished element μ.