Summary
The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland. LEP collided electrons with positrons at energies that reached 209 GeV. It was a circular collider with a circumference of 27 kilometres built in a tunnel roughly 100 m (300 ft) underground and passing through Switzerland and France. LEP was used from 1989 until 2000. Around 2001 it was dismantled to make way for the Large Hadron Collider, which re-used the LEP tunnel. To date, LEP is the most powerful accelerator of leptons ever built. LEP was a circular lepton collider – the most powerful such ever built. For context, modern colliders can be generally categorized based on their shape (circular or linear) and on what types of particles they accelerate and collide (leptons or hadrons). Leptons are point particles and are relatively light. Because they are point particles, their collisions are clean and amenable to precise measurements; however, because they are light, the collisions cannot reach the same energy that can be achieved with heavier particles. Hadrons are composite particles (composed of quarks) and are relatively heavy; protons, for example, have a mass 2000 times greater than electrons. Because of their higher mass, they can be accelerated to much higher energies, which is the key to directly observing new particles or interactions that are not predicted by currently accepted theories. However, hadron collisions are very messy (there are often many unrelated tracks, for example, and it is not straightforward to determine the energy of the collisions), and therefore more challenging to analyze and less amenable to precision measurements. The shape of the collider is also important. High energy physics colliders collect particles into bunches, and then collide the bunches together. However, only a very tiny fraction of particles in each bunch actually collide.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-751: Advanced concepts in particle accelerators
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
Show more
Related lectures (25)
Higgs boson; Dark matter
Explores the properties of the Higgs boson and the concept of dark matter, including detection strategies and challenges.
Luminosity and beam-beam effects
Explores circular accelerators, colliders, luminosity calculation, beam-beam forces, different collisions, and the LHC luminosity reach, emphasizing the effects of beam-beam interactions.
Scattering Theory: Local Interactions and Quantum Physics
Covers the concept of scattering theory and its application to non-relativistic collisions and collider experiments.
Show more
Related publications (362)

Optimizing Dynamic Aperture Studies with Active Learning

Davide Di Croce, Tatiana Pieloni, Ekaterina Krymova, Massimo Giovannozzi

Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
2024

Impact of beam-beam effects on absolute luminosity calibrations at the CERN Large Hadron Collider

Tatiana Pieloni, Claudia Tambasco

At the Large Hadron Collider (LHC), absolute luminosity calibrations obtained by the van der Meer (vdM) method are affected by the mutual electromagnetic interaction of the two beams. The colliding bunches experience relative orbit shifts, as well as optic ...
New York2024
Show more
Related concepts (5)
Particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Higgs boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
ATLAS experiment
ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN (the European Organization for Nuclear Research) in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012.
Show more