An Einstein ring, also known as an Einstein–Chwolson ring or Chwolson ring (named for Orest Chwolson), is created when light from a galaxy or star passes by a massive object en route to the Earth. Due to gravitational lensing, the light is diverted, making it seem to come from different places. If source, lens, and observer are all in perfect alignment (syzygy), the light appears as a ring.
Gravitational lensing is predicted by Albert Einstein's theory of general relativity. Instead of light from a source traveling in a straight line (in three dimensions), it is bent by the presence of a massive body, which distorts spacetime. An Einstein Ring is a special case of gravitational lensing, caused by the exact alignment of the source, lens, and observer. This results in symmetry around the lens, causing a ring-like structure.
The size of an Einstein ring is given by the Einstein radius. In radians, it is
where
is the gravitational constant,
is the mass of the lens,
is the speed of light,
is the angular diameter distance to the lens,
is the angular diameter distance to the source, and
is the angular diameter distance between the lens and the source.
Over cosmological distances in general.
The bending of light by a gravitational body was predicted by Albert Einstein in 1912, a few years before the publication of general relativity in 1916 (Renn et al. 1997). The ring effect was first mentioned in the academic literature by Orest Khvolson in a short article in 1924, in which he mentioned the “halo effect” of gravitation when the source, lens, and observer are in near-perfect alignment. Einstein remarked upon this effect in 1936 in a paper prompted by a letter by a Czech engineer, R W Mandl, but stated
Of course, there is no hope of observing this phenomenon directly. First, we shall scarcely ever approach closely enough to such a central line. Second, the angle β will defy the resolving power of our instruments.
(In this statement, β is the Einstein Radius currently denoted by as in the expression above.