Summary
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. The equation is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of a wave function, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equation predicted bound states of the atom in agreement with experimental observations. The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. Other formulations of quantum mechanics include matrix mechanics, introduced by Werner Heisenberg, and the path integral formulation, developed chiefly by Richard Feynman. When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics". Paul Dirac incorporated special relativity and quantum mechanics into a single formulation that simplifies to the Schrödinger equation when relativistic effects are not significant. Introductory courses on physics or chemistry typically introduce the Schrödinger equation in a way that can be appreciated knowing only the concepts and notations of basic calculus, particularly derivatives with respect to space and time. A special case of the Schrödinger equation that admits a statement in those terms is the position-space Schrödinger equation for a single nonrelativistic particle in one dimension: Here, is a wave function, a function that assigns a complex number to each point at each time .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (68)

How Lagrangian States Evolve Into Random Waves

Alejandro Rivera

In this paper, we consider a compact connected manifold (X, g) of negative curvature, and a family of semi-classical Lagrangian states f(h)(x) = a(x)e(i phi(x)/h) on X. For a wide family of phases phi
ECOLE POLYTECHNIQUE2022

Exploiting Marginal Stability in Slow-Fast Quasilinear Dynamical Systems

Alessia Ferraro

The accurate investigation of many geophysical phenomena via direct numerical simulations is computationally not possible nowadays due to the huge range of spatial and temporal scales to be resolved.
EPFL2022

High-order geometric integrators for nonadiabatic molecular quantum dynamics and their applications to explore conical intersections

Seonghoon Choi

Accurate simulations of molecular quantum dynamics are crucial for understanding numerous natural processes and experimental results. Yet, such high-accuracy simulations are challenging even for relat
EPFL2022
Show more
Related concepts (273)
Wave function
In quantum physics, a wave function (or wavefunction), represented by the Greek letter Ψ, is a mathematical description of the quantum state of an isolated quantum system. In the Copenhagen interpretation of quantum mechanics, the wave function is a complex-valued probability amplitude; the probabilities for the possible results of the measurements made on a measured system can be derived from the wave function. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).
Quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales.
Wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields - as they occur in classical physics - such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics. Single mechanical or electromagnetic waves propagating in a pre-defined direction can also be described with the first-order one-way wave equation, which is much easier to solve and also valid for inhomogeneous media.
Show more
Related courses (117)
CH-452: Computational methods in molecular quantum mechanics
This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory will be covered. An introduction to
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
Show more
Related MOOCs (17)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more