Deep reinforcement learning (deep RL) is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs (e.g. every pixel rendered to the screen in a video game) and decide what actions to perform to optimize an objective (e.g. maximizing the game score). Deep reinforcement learning has been used for a diverse set of applications including but not limited to robotics, video games, natural language processing, computer vision, education, transportation, finance and healthcare.
Deep learning is a form of machine learning that utilizes a neural network to transform a set of inputs into a set of outputs via an artificial neural network. Deep learning methods, often using supervised learning with labeled datasets, have been shown to solve tasks that involve handling complex, high-dimensional raw input data such as images, with less manual feature engineering than prior methods, enabling significant progress in several fields including computer vision and natural language processing. In the past decade deep RL has achieved remarkable result on range of problem, from a single and multiplayer games-such as GO, Atari Games, and Dota 2-to robotic
Reinforcement learning is a process in which an agent learns to make decisions through trial and error. This problem is often modeled mathematically as a Markov decision process (MDP), where an agent at every timestep is in a state , takes action , receives a scalar reward and transitions to the next state according to environment dynamics . The agent attempts to learn a policy , or map from observations to actions, in order to maximize its returns (expected sum of rewards). In reinforcement learning (as opposed to optimal control) the algorithm only has access to the dynamics through sampling.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Real-world engineering applications must cope with a large dataset of dynamic variables, which cannot be well approximated by classical or deterministic models. This course gives an overview of method
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
This course covers optical remote sensing from satellites and airborne platforms. The different systems are presented. The students will acquire skills in image processing and machine/deep learning to
AlphaZero is a computer program developed by artificial intelligence research company DeepMind to master the games of chess, shogi and go. This algorithm uses an approach similar to AlphaGo Zero. On December 5, 2017, the DeepMind team released a preprint paper introducing AlphaZero, which within 24 hours of training achieved a superhuman level of play in these three games by defeating world-champion programs Stockfish, Elmo, and the three-day version of AlphaGo Zero.
AlphaGo is a computer program that plays the board game Go. It was developed by the London-based DeepMind Technologies, an acquired subsidiary of Google (now Alphabet Inc.). Subsequent versions of AlphaGo became increasingly powerful, including a version that competed under the name Master. After retiring from competitive play, AlphaGo Master was succeeded by an even more powerful version known as AlphaGo Zero, which was completely self-taught without learning from human games.
DeepMind Technologies Limited, doing business as Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014, becoming a wholly owned subsidiary of Google parent company Alphabet Inc. after Google's corporate restructuring in 2015. The company is based in London, with research centres in Canada, France, and the United States.
Explores generative models for trajectory forecasting in autonomous vehicles, including discriminative vs generative models, VAES, GANS, and case studies.
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...