Concept

I-adic topology

Summary
In commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module. However, M need not be Hausdorff; it is Hausdorff if and only ifso that d becomes a genuine metric. Related to the usual terminology in topology, where a Hausdorff space is also called separated, in that case, the a-adic topology is called separated. By Krull's intersection theorem, if R is a Noetherian ring which is an integral domain or a local ring, it holds that for any proper ideal a of R. Thus under these conditions, for any proper ideal a of R and any R-module M, the a-adic topology on M is separated. For a submodule N of M, the canonical homomorphism to M/N induces a quotient topology which coincides with the a-adic topology. The analogous result is not necessarily true for the submodule N itself: the subspace topology need not be the a-adic topology. However, the two topologies coincide when R is Noetherian and M finitely generated. This follows from the Artin-Rees lemma. Completion (algebra) When M is Hausdorff, M can be completed as a metric space; the resulting space is denoted by and has the module structure obtained by extending the module operations by continuity. It is also the same as (or canonically isomorphic to): where the right-hand side is an inverse limit of quotient modules under natural projection. For example, let be a polynomial ring over a field k and a = (x1, ..., xn) the (unique) homogeneous maximal ideal. Then , the formal power series ring over k in n variables. As a consequence of the above, the a-adic closure of a submodule is This closure coincides with N whenever R is a-adically complete and M is finitely generated.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (5)
Conductor of X: Waldsparger Formula and Subconvexity Bound
Covers the equidistribution of representations of integers by ternary forms and the conductor of X.
Affine Varieties
Introduces affine varieties and covers morphisms between them and their coordinate rings.
Affine Algebraic Varieties: Zariski Topology
Explores affine algebraic varieties, emphasizing the Zariski Topology and regular functions.
Show more