Concept

I-adic topology

In commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module. However, M need not be Hausdorff; it is Hausdorff if and only ifso that d becomes a genuine metric. Related to the usual terminology in topology, where a Hausdorff space is also called separated, in that case, the a-adic topology is called separated. By Krull's intersection theorem, if R is a Noetherian ring which is an integral domain or a local ring, it holds that for any proper ideal a of R. Thus under these conditions, for any proper ideal a of R and any R-module M, the a-adic topology on M is separated. For a submodule N of M, the canonical homomorphism to M/N induces a quotient topology which coincides with the a-adic topology. The analogous result is not necessarily true for the submodule N itself: the subspace topology need not be the a-adic topology. However, the two topologies coincide when R is Noetherian and M finitely generated. This follows from the Artin-Rees lemma. Completion (algebra) When M is Hausdorff, M can be completed as a metric space; the resulting space is denoted by and has the module structure obtained by extending the module operations by continuity. It is also the same as (or canonically isomorphic to): where the right-hand side is an inverse limit of quotient modules under natural projection. For example, let be a polynomial ring over a field k and a = (x1, ..., xn) the (unique) homogeneous maximal ideal. Then , the formal power series ring over k in n variables. As a consequence of the above, the a-adic closure of a submodule is This closure coincides with N whenever R is a-adically complete and M is finitely generated.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.