In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.
A ring is a set equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called addition and multiplication and commonly denoted by "" and ""; e.g. and . To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., . The identity elements for addition and multiplication are denoted and , respectively.
If the multiplication is commutative, i.e.
then the ring is called commutative. In the remainder of this article, all rings will be commutative, unless explicitly stated otherwise.
An important example, and in some sense crucial, is the ring of integers with the two operations of addition and multiplication. As the multiplication of integers is a commutative operation, this is a commutative ring. It is usually denoted as an abbreviation of the German word Zahlen (numbers).
A field is a commutative ring where and every non-zero element is invertible; i.e., has a multiplicative inverse such that . Therefore, by definition, any field is a commutative ring. The rational, real and complex numbers form fields.
If is a given commutative ring, then the set of all polynomials in the variable whose coefficients are in forms the polynomial ring, denoted . The same holds true for several variables.
If is some topological space, for example a subset of some , real- or complex-valued continuous functions on form a commutative ring. The same is true for differentiable or holomorphic functions, when the two concepts are defined, such as for a complex manifold.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any although their existence depends on the category that is considered. They are a special case of the concept of in category theory. By working in the , that is by reverting the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings . For any ideal I of R, define to be the set of prime ideals containing I. We can put a topology on by defining the to be This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For f ∈ R, define Df to be the set of prime ideals of R not containing f.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...