In geometry, a pseudosphere is a surface with constant negative Gaussian curvature.
A pseudosphere of radius R is a surface in having curvature −1/R2 in each point. Its name comes from the analogy with the sphere of radius R, which is a surface of curvature 1/R2. The term was introduced by Eugenio Beltrami in his 1868 paper on models of hyperbolic geometry.
TOC
The same surface can be also described as the result of revolving a tractrix about its asymptote.
For this reason the pseudosphere is also called tractroid. As an example, the (half) pseudosphere (with radius 1) is the surface of revolution of the tractrix parametrized by
It is a singular space (the equator is a singularity), but away from the singularities, it has constant negative Gaussian curvature and therefore is locally isometric to a hyperbolic plane.
The name "pseudosphere" comes about because it has a two-dimensional surface of constant negative Gaussian curvature, just as a sphere has a surface with constant positive Gaussian curvature.
Just as the sphere has at every point a positively curved geometry of a dome the whole pseudosphere has at every point the negatively curved geometry of a saddle.
As early as 1693 Christiaan Huygens found that the volume and the surface area of the pseudosphere are finite, despite the infinite extent of the shape along the axis of rotation. For a given edge radius R, the area is 4πR2 just as it is for the sphere, while the volume is 2/3πR3 and therefore half that of a sphere of that radius.
The half pseudosphere of curvature −1 is covered by the interior of a horocycle. In the Poincaré half-plane model one convenient choice is the portion of the half-plane with y ≥ 1. Then the covering map is periodic in the x direction of period 2pi, and takes the horocycles y = c to the meridians of the pseudosphere and the vertical geodesics x = c to the tractrices that generate the pseudosphere. This mapping is a local isometry, and thus exhibits the portion y ≥ 1 of the upper half-plane as the universal covering space of the pseudosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane where every point is a saddle point.
In mathematical physics, Minkowski space (or Minkowski spacetime) (mɪŋˈkɔːfski,_-ˈkɒf-) combines inertial space and time manifolds (x,y) with a non-inertial reference frame of space and time (x',t') into a four-dimensional model relating a position (inertial frame of reference) to the field (physics). A four-vector (x,y,z,t) consists of a coordinate axes such as a Euclidean space plus time. This may be used with the non-inertial frame to illustrate specifics of motion, but should not be confused with the spacetime model generally.
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Explores non-Euclidean geometries, including hyperbolic geometry and the tractricoid model, challenging Euclidean principles and introducing projective geometry.
Shape estimation of soft robotic systems is challenging due to the range of deformations that can be achieved, and the limited availability of physically compatible sensors. We propose a method of reconstruction using Inertial Measurement Units (IMUs), whi ...
Springer Verlag2021
, ,
Existing shape models with spherical topology are typically designed either in the discrete domain using interpolating polygon meshes or in the continuous domain using smooth but non-interpolating schemes such as NURBS. Polygon models and subdivision metho ...
Vertical localization performance in a practical wave field synthesis formulation is investigated. The implemented 3-D rendering method allows precise sound source reproduction while taking into account practical constraints such as the required number of ...