The mathematical theory of information is based on probability theory and statistics, and measures information with several quantities of information. The choice of logarithmic base in the following formulae determines the unit of information entropy that is used. The most common unit of information is the bit, or more correctly the shannon, based on the binary logarithm. Although "bit" is more frequently used in place of "shannon", its name is not distinguished from the bit as used in data-processing to refer to a binary value or stream regardless of its entropy (information content) Other units include the nat, based on the natural logarithm, and the hartley, based on the base 10 or common logarithm.
In what follows, an expression of the form is considered by convention to be equal to zero whenever is zero. This is justified because for any logarithmic base.
Shannon derived a measure of information content called the self-information or "surprisal" of a message :
where is the probability that message is chosen from all possible choices in the message space . The base of the logarithm only affects a scaling factor and, consequently, the units in which the measured information content is expressed. If the logarithm is base 2, the measure of information is expressed in units of shannons or more often simply "bits" (a bit in other contexts is rather defined as a "binary digit", whose average information content is at most 1 shannon).
Information from a source is gained by a recipient only if the recipient did not already have that information to begin with. Messages that convey information over a certain (P=1) event (or one which is known with certainty, for instance, through a back-channel) provide no information, as the above equation indicates. Infrequently occurring messages contain more information than more frequently occurring messages.
It can also be shown that a compound message of two (or more) unrelated messages would have a quantity of information that is the sum of the measures of information of each message individually.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Maîtriser les notions de base d¿un système de transmission de l¿information et identifier les critères déterminants pour la planification d¿un système de télécommunication.
Évaluer les performances d¿
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Explores the concept of entropy expressed in bits and its relation to probability distributions, focusing on information gain and loss in various scenarios.
In information theory, the cross-entropy between two probability distributions and over the same underlying set of events measures the average number of bits needed to identify an event drawn from the set if a coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution . The cross-entropy of the distribution relative to a distribution over a given set is defined as follows: where is the expected value operator with respect to the distribution .
The hartley (symbol Hart), also called a ban, or a dit (short for decimal digit), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming a priori equiprobability of each possible value. It is named after Ralph Hartley.
In information theory, joint entropy is a measure of the uncertainty associated with a set of variables. The joint Shannon entropy (in bits) of two discrete random variables and with images and is defined as where and are particular values of and , respectively, is the joint probability of these values occurring together, and is defined to be 0 if . For more than two random variables this expands to where are particular values of , respectively, is the probability of these values occurring together, and is defined to be 0 if .
Displaced communication, whereby individuals communicate regarding a subject that is not immediately present (spatially or temporally), is one of the key features of human language. It also occurs in a few animal species, most notably the honeybee, where t ...
2023
,
Hand gestures are one of the most natural and expressive way for humans to convey information, and thus hand gesture recognition has become a research hotspot in the human-machine interface (HMI) field. In particular, biological signals such as surface ele ...
SPRINGER INTERNATIONAL PUBLISHING AG2023
, ,
Managing existing civil infrastructure is challenging due to evolving functional requirements, material aging, and climate change. With increasingly limited economic, environmental, and material resources, more sustainable solutions for practical asset man ...