In geometry, Boy's surface is an immersion of the real projective plane in 3-dimensional space found by Werner Boy in 1901. He discovered it on assignment from David Hilbert to prove that the projective plane could not be immersed in 3-space.
Boy's surface was first parametrized explicitly by Bernard Morin in 1978. Another parametrization was discovered by Rob Kusner and Robert Bryant. Boy's surface is one of the two possible immersions of the real projective plane which have only a single triple point.
Unlike the Roman surface and the cross-cap, it has no other singularities than self-intersections (that is, it has no pinch-points).
Boy's surface can be parametrized in several ways. One parametrization, discovered by Rob Kusner and Robert Bryant, is the following: given a complex number w whose magnitude is less than or equal to one (), let
and then set
we then obtain the Cartesian coordinates x, y, and z of a point on the Boy's surface.
If one performs an inversion of this parametrization centered on the triple point, one obtains a complete minimal surface with three ends (that's how this parametrization was discovered naturally). This implies that the Bryant–Kusner parametrization of Boy's surfaces is "optimal" in the sense that it is the "least bent" immersion of a projective plane into three-space.
If w is replaced by the negative reciprocal of its complex conjugate, then the functions g1, g2, and g3 of w are left unchanged.
By replacing w in terms of its real and imaginary parts w = s + it, and expanding resulting parameterization, one may obtain a parameterization of Boy's surface in terms of rational functions of s and t. This shows that Boy's surface is not only an algebraic surface, but even a rational surface. The remark of the preceding paragraph shows that the generic fiber of this parameterization consists of two points (that is that almost every point of Boy's surface may be obtained by two parameters values).
Let be the Bryant–Kusner parametrization of Boy's surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in \mathbb{R}^3 passing through the origin.
Surface-enhanced Raman spectroscopy (SERS) coupled with density functional theory (DFT) computations can characterise the adsorption orientation of a molecule on a nanoparticle surface. When using DFT to simulate SERS on a silver surface, one typically emp ...
We classify simple groups that act by birational transformations on compact complex Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-trivially by birational transformations on a projective surface over an arbitrar ...
2020
,
In this work we propose a new, general and computationally cheap way to tackle parametrized PDEs defined on domains with variable shape when relying on the reduced basis method. We easily describe a domain by boundary parametrizations, and obtain domain de ...