La surface de Boy, du nom de Werner Boy, mathématicien ayant été le premier à imaginer son existence en 1902, est une immersion du plan projectif réel dans l'espace usuel de dimension 3.
Le plan projectif se définit comme l'espace quotient de par la relation d'équivalence qu'est la colinéarité.
La surface de Boy peut aussi être « vue » comme une sphère dont on a recollé deux à deux les points antipodaux, ou encore un disque dont on a recollé deux à deux les points diamétralement opposés de son bord. On peut également la construire en recollant le bord d'un disque sur le bord d'un ruban de Möbius.
Le plan projectif est une variété différentielle compacte de dimension 2 non orientable. Il n'est pas plongeable dans un espace de dimension 3 et de fait il est difficile, voire impossible, de le visualiser ; la surface de Boy est une des moins mauvaises représentations qu’on peut en donner.
Elle admet un revêtement connexe orientable à deux feuillets, qui n'est autre que la sphère usuelle. Cette propriété est utilisée dans le retournement de la sphère par une homotopie d'immersions. On déforme la sphère de façon à la faire coïncider avec le revêtement à deux feuillets de la surface de Boy. Puis on fait se traverser les deux feuillets et on procède à la transformation inverse pour revenir à une sphère, retournée par rapport à la sphère initiale.
La bouteille de Klein est homéomorphe à une somme connexe de deux surfaces de Boy.
Le groupe fondamental de la surface de Boy est isomorphe au groupe à deux éléments .
De nombreuses images de la surface de Boy peuvent être trouvées sur l'album Le Topologicon de Jean-Pierre Petit qui contient également une animation, sous forme d'un folioscope montrant comment faire croître un ruban de Möbius à trois demi-tours pour le transformer en surface de Boy, son bord circulaire convergeant vers un point.
Les images ci-après correspondent à une version « lissée » d'un découpage présent dans l'album, permettant de construire la version polyédrique de la surface de Boy sous forme d'un découpage.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
En géométrie différentielle, une immersion est une application différentiable d'une variété différentielle dans une autre, dont la différentielle en tout point est injective. Soient V et W deux variétés et f une application différentiable de V dans W. On dit que f est une immersion si pour tout x appartenant à V, le rang de l'application linéaire tangente Tf(x) est égal à la dimension de V. On la différencie : de la submersion (le rang de Tf(x) est égal à la dimension de W) ; du plongement (en plus d'être une immersion, f est un homéomorphisme de V sur f(V)).
En géométrie, le plan projectif réel, noté RP ou P(R), est un exemple simple d'espace projectif (le corps des scalaires est constitué des nombres réels et la dimension est 2), permettant d'illustrer les mécanismes fondamentaux de la géométrie projective. Notamment, des représentations graphiques simples sont possibles qui font apparaître les caractéristiques propres à cette géométrie, contrairement au cas d'espaces construits sur d'autres corps.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
We classify simple groups that act by birational transformations on compact complex Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-trivially by birational transformations on a projective surface over an arbitrar ...
2020
,
In this work we propose a new, general and computationally cheap way to tackle parametrized PDEs defined on domains with variable shape when relying on the reduced basis method. We easily describe a domain by boundary parametrizations, and obtain domain de ...
MATHICSE2016
Surface-enhanced Raman spectroscopy (SERS) coupled with density functional theory (DFT) computations can characterise the adsorption orientation of a molecule on a nanoparticle surface. When using DFT to simulate SERS on a silver surface, one typically emp ...