The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.
This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, chemistry, geology, physics, and planetary science. Since the dawn of the Space Age in the 1950s and the discovery of exoplanets in the 1990s, the model has been both challenged and refined to account for new observations.
The Solar System has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later to have been captured by their planets. Still others, such as Earth's Moon, may be the result of giant collisions. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. Beyond Neptune many sub-planet sized objects formed. Several thousand trans-Neptunian objects have been observed. Unlike the planets, these trans-neptunian objects mostly move on eccentric orbits, inclined to the plane of the planets. The positions of the planets might have shifted due to gravitational interactions. Planetary migration may have been responsible for much of the Solar System's early evolution.
In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a red giant), before casting off its outer layers as a planetary nebula and leaving behind a stellar remnant known as a white dwarf. In the far distant future, the gravity of passing stars will gradually reduce the Sun's retinue of planets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours vise à donner aux architectes les connaissances et le regard critique nécessaires à utiliser des technologies et stratégies solaires adaptés (passives et actives, hivernales et estivales) dan
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Planetary migration occurs when a planet or other body in orbit around a star interacts with a disk of gas or planetesimals, resulting in the alteration of its orbital parameters, especially its semi-major axis. Planetary migration is the most likely explanation for hot Jupiters (exoplanets with Jovian masses but orbits of only a few days). The generally accepted theory of planet formation from a protoplanetary disk predicts that such planets cannot form so close to their stars, as there is insufficient mass at such small radii and the temperature is too high to allow the formation of rocky or icy planetesimals.
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, in an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes. The accretion model that Earth and the other terrestrial planets formed from meteoric material was proposed in 1944 by Otto Schmidt, followed by the protoplanet theory of William McCrea (1960) and finally the capture theory of Michael Woolfson.
The origin of micrometeorites (MMs) from asteroids and comets is well-established, but the relative contribution from these two classes remains poorly resolved. Likewise, determining the precise origin of individual MMs is an open challenge. Here, cosmic-r ...
X-Ray observation of Venus using JEMX instrument on INTEGRAL telescope in the 18.04.22 to 24.04.22 window. Abstract: On April 22 and 24, 2022, Venus was observed with the JEM-X detector of the INTEGRAL space telescope. The observation performed yielded a d ...
2023
We present an end-to-end description of the formation of globular clusters (GCs) combining a treatment for their formation and dynamical evolution within galaxy haloes with a state-of-the-art semi-analytic simulation of galaxy formation. Our approach allow ...