The amount of greenhouse gas emissions from agriculture is significant: The agriculture, forestry and land use sector contribute between 13% and 21% of global greenhouse gas emissions. Agriculture contributes towards climate change through direct greenhouse gas emissions and by the conversion of non-agricultural land such as forests into agricultural land. Emissions of nitrous oxide, methane make up over half of total greenhouse gas emission from agriculture. Animal husbandry is a major source of greenhouse gas emissions.
The agricultural food system is responsible for a significant amount of greenhouse gas emissions. In addition to being a significant user of land and consumer of fossil fuel, agriculture contributes directly to greenhouse gas emissions through practices such as rice production and the raising of livestock. The three main causes of the increase in greenhouse gases observed over the past 250 years have been fossil fuels, land use, and agriculture. Farm animal digestive systems can be put into two categories: monogastric and ruminant. Ruminant cattle for beef and dairy rank high in greenhouse-gas emissions; monogastric, or pigs and poultry-related foods, are low. The consumption of the monogastric types may yield less emissions. Monogastric animals have a higher feed-conversion efficiency, and also do not produce as much methane. Furthermore, is actually re-emitted into the atmosphere by plant and soil respiration in the later stages of crop growth, causing more greenhouse gas emissions. The amount of greenhouse gases produced during the manufacture and use of nitrogen fertilizer is estimated as around 5% of anthropogenic greenhouse gas emissions. The single most important way to cut emissions from it is to use less fertilizers, while increasing the efficiency of their use.
There are many strategies that can be used to help soften the effects, and the further production of greenhouse gas emissions - this is also referred to as climate-smart agriculture.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
The class introduces the concept of circular economy and its applications to building design, with a focus on design with reused components, design for disassembly, and life-cycle assessment. The clas
Addresses the major world challenge of primary energy consumption and the impact of CO2 emissions on global warming, local pollution, and loss of diversity.
The effects of climate change on agriculture can result in lower crop yields and nutritional quality due to drought, heat waves and flooding as well as increases in pests and plant diseases. Climate change impacts are making it harder for agricultural activities to meet human needs. The effects are unevenly distributed across the world and are caused by changes in temperature, precipitation and atmospheric carbon dioxide levels due to global climate change. In 2019, millions were already suffering from food insecurity due to climate change.
Climate-smart agriculture (CSA) (or climate resilient agriculture) is an integrated approach to managing landscapes to help adapt agricultural methods, livestock and crops to the effects of climate change and, where possible, counteract it by reducing greenhouse gas emissions from agriculture, at the same time taking into account the growing world population to ensure food security. Thus, the emphasis is not simply on carbon farming or sustainable agriculture, but also on increasing agricultural productivity.
The term food system describes the interconnected systems and processes that influence nutrition, food, health, community development, and agriculture. A food system includes all processes and infrastructure involved in feeding a population: growing, harvesting, processing, packaging, transporting, marketing, consumption, distribution, and disposal of food and food-related items. It also includes the inputs needed and outputs generated at each of these steps.
Climate action to achieve the Paris Agreement should respect the United Nations Sustainable Development Goals. Here, we use an integrated assessment modelling framework comprising nine climate policy models and quantify the impacts of decarbonisation pathw ...
2024
The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes t ...
Extracting pieces of concrete from obsolete buildings and reusing them, as is, in new assemblies is today rarely considered a strategy for improving the sustainability of the construction sector. By delaying the crushing of concrete into aggregates and avo ...