Light tubes (also known as light pipes, tubular skylights or sun tunnels) are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.
In their application to daylighting, they are also often called tubular daylighting devices, sun pipes, sun scopes, or daylight pipes. They can be divided into two broad categories: hollow structures that contain the light with reflective surfaces; and transparent solids that contain the light by total internal reflection. Principles of nonimaging optics govern the flow of light through them.
Manufacturing custom designed infrared light pipes, hollow waveguides and homogenizers is non-trivial. This is because these are tubes lined with a highly polished infrared reflective coating of gold, which can be applied thick enough to permit these tubes to be used in highly corrosive atmospheres. Carbon black can be applied to certain parts of light pipes to absorb IR light (see photonics). This is done to limit IR light to only certain areas of the pipe.
While most light pipes are produced with a round cross-section, light pipes are not limited to this geometry. Square and hexagonal cross-sections are used in special applications. Hexagonal pipes tend to produce the most homogenized type of IR Light. The pipes do not need to be straight. Bends in the pipe have little effect on efficiency.
The first commercial reflector systems were patented and marketed in the 1850s by Paul Emile Chappuis in London, utilizing various forms of angled mirror designs. Chappuis Ltd's reflectors were in continuous production until the factory was destroyed in 1943. The concept was rediscovered and patented in 1986 by Solatube International of Australia. This system has been marketed for widespread residential and commercial use. Other daylighting products are on the market under various generic names, such as "SunScope", "solar pipe", "light pipe", "light tube", and "tubular skylight".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating.
In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices. The key to designing a passive solar building is to best take advantage of the local climate performing an accurate site analysis.
Passive house (Passivhaus) is a voluntary standard for energy efficiency in a building, which reduces the building's ecological footprint. It results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. The standard is not confined to residential properties; several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard.
Ce cours traite des divers domaines techniques intervenant dans la conception et la réalisation d'un bâtiment, soit : physique du bâtiment, structures, matériaux, construction et installations techniq
La conformité de la construction aux principes du développement durable requiert de l'ingénieur et de l'architecte la maîtrise de compétences multidisciplinaires. A l'issue du cours, les étudiants acq
Explores the physics of building technology and the physiology of vision, emphasizing visual comfort and lighting effects.
Explores the health effects of artificial light on living organisms and the principles of fluorescence guided surgery, along with the mechanisms and history of bright light therapy for psychiatric disorders.
Explores the physiology of vision, lighting technology, and visual comfort in building design.
Designing architectural façades that allow sufficient daylight to create visually comfortable and pleasant envi- ronments is a challenging aspect of building design as it requires to account for visual comfort and discomfort glare risks, and understand the ...
Natural light greatly impacts how a building is experienced by its occupants. It affects their well-being, notably from their health and biological clock perspectives, but also their perceived visual and thermal comfort, or their emotional response. If we ...
Natural light greatly impacts how a building is experienced by its occupants. It affects their well-being, notably from their health and biological clock perspectives, but also their perceived visual and thermal comfort, or their emotional response. If we ...