Summary
Light tubes (also known as light pipes, tubular skylights or sun tunnels) are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides. In their application to daylighting, they are also often called tubular daylighting devices, sun pipes, sun scopes, or daylight pipes. They can be divided into two broad categories: hollow structures that contain the light with reflective surfaces; and transparent solids that contain the light by total internal reflection. Principles of nonimaging optics govern the flow of light through them. Manufacturing custom designed infrared light pipes, hollow waveguides and homogenizers is non-trivial. This is because these are tubes lined with a highly polished infrared reflective coating of gold, which can be applied thick enough to permit these tubes to be used in highly corrosive atmospheres. Carbon black can be applied to certain parts of light pipes to absorb IR light (see photonics). This is done to limit IR light to only certain areas of the pipe. While most light pipes are produced with a round cross-section, light pipes are not limited to this geometry. Square and hexagonal cross-sections are used in special applications. Hexagonal pipes tend to produce the most homogenized type of IR Light. The pipes do not need to be straight. Bends in the pipe have little effect on efficiency. The first commercial reflector systems were patented and marketed in the 1850s by Paul Emile Chappuis in London, utilizing various forms of angled mirror designs. Chappuis Ltd's reflectors were in continuous production until the factory was destroyed in 1943. The concept was rediscovered and patented in 1986 by Solatube International of Australia. This system has been marketed for widespread residential and commercial use. Other daylighting products are on the market under various generic names, such as "SunScope", "solar pipe", "light pipe", "light tube", and "tubular skylight".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.