In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function together with an environment. The environment is a mapping associating each free variable of the function (variables that are used locally, but defined in an enclosing scope) with the value or reference to which the name was bound when the closure was created. Unlike a plain function, a closure allows the function to access those captured variables through the closure's copies of their values or references, even when the function is invoked outside their scope.
The concept of closures was developed in the 1960s for the mechanical evaluation of expressions in the λ-calculus and was first fully implemented in 1970 as a language feature in the PAL programming language to support lexically scoped first-class functions.
Peter Landin defined the term closure in 1964 as having an environment part and a control part as used by his SECD machine for evaluating expressions. Joel Moses credits Landin with introducing the term closure to refer to a lambda expression with open bindings (free variables) that have been closed by (or bound in) the lexical environment, resulting in a closed expression, or closure. This use was subsequently adopted by Sussman and Steele when they defined Scheme in 1975, a lexically scoped variant of Lisp, and became widespread.
Sussman and Abelson also use the term closure in the 1980s with a second, unrelated meaning: the property of an operator that adds data to a data structure to also be able to add nested data structures. This use of the term comes from mathematics use, rather than the prior use in computer science. The authors consider this overlap in terminology to be "unfortunate."
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer programming, an anonymous function (function literal, lambda abstraction, lambda function, lambda expression or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. If the function is only used once, or a limited number of times, an anonymous function may be syntactically lighter than using a named function.
In analytic philosophy and computer science, referential transparency and referential opacity are properties of linguistic constructions, and by extension of languages. A linguistic construction is called referentially transparent when for any expression built from it, replacing a subexpression with another one that denotes the same value does not change the value of the expression. Otherwise, it is called referentially opaque.
Lambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing lambda terms and performing reduction operations on them.
Students learn several implementation techniques for modern functional and object-oriented programming languages. They put some of them into practice by developing key parts of a compiler and run time
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Explores nested functions, blocks, visibility rules, and lexical scoping in Scala.
Explores the representation and transformation of values, focusing on closure conversion and the challenges of representing functions in functional languages.
Explores the Ising model in 2D, emphasizing system expansion and properties.
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
Small unmanned aerial vehicles (UAV) have penetrated multiple domains over the past years. In GNSS-denied or indoor environments, aerial robots require a robust and stable localization system, often with external feedback, in order to fly safely. Motion ca ...
2020
, ,
Type systems usually characterize the shape of values but not their free variables. However, many desirable safety properties could be guaranteed if one knew the free variables captured by values. We describe CC