Summary
In biological taxonomy, a domain (dəˈmeɪn or doʊˈmeɪn) (Latin: regio), also dominion, superkingdom, realm, or empire, is the highest taxonomic rank of all organisms taken together. It was introduced in the three-domain system of taxonomy devised by Carl Woese, Otto Kandler and Mark Wheelis in 1990. According to the domain system, the tree of life consists of either three domains such as Archaea, Bacteria, and Eukarya, or two domains consisting of Archaea and Bacteria, with Eukarya included in Archaea. The first two are all prokaryotes, single-celled microorganisms without a membrane-bound nucleus. All organisms that have a cell nucleus and other membrane-bound organelles are included in Eukarya and are called eukaryotes. Non-cellular life is not included in this system. Alternatives to the three-domain system include the earlier two-empire system (with the empires Prokaryota and Eukaryota), and the eocyte hypothesis (with two domains of Bacteria and Archaea, with Eukarya included as a branch of Archaea). The term domain was proposed by Carl Woese, Otto Kandler, and Mark Wheelis (1990) in a three-domain system. This term represents a synonym for the category of dominion (Lat. dominium), introduced by Moore in 1974. Carolus Linnaeus made the classification of domain popular in the famous taxonomy system he created in the middle of the eighteenth century. This system was further improved by the studies of Charles Darwin later on but failed to properly classify the domain, Bacteria, due to it having very few observable features to compare to the other domains. Carl Woese made a revolutionary breakthrough when, in 1977, he compared the nucleotide sequences of the 16s ribosomal RNA and discovered that the rank, domain, contained three branches, not two like scientists had previously thought. Initially, due to their physical similarities, Archaea and Bacteria were classified together and called "archaebacteria". However, scientists now know that these two domains are hardly similar and are internally wildly different.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.