The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable X with mean μ and variance σ2, the random variable Y = |X| has a folded normal distribution. Such a case may be encountered if only the magnitude of some variable is recorded, but not its sign. The distribution is called "folded" because probability mass to the left of x = 0 is folded over by taking the absolute value. In the physics of heat conduction, the folded normal distribution is a fundamental solution of the heat equation on the half space; it corresponds to having a perfect insulator on a hyperplane through the origin.
The probability density function (PDF) is given by
for x ≥ 0, and 0 everywhere else. An alternative formulation is given by
where cosh is the cosine Hyperbolic function. It follows that the cumulative distribution function (CDF) is given by:
for x ≥ 0, where erf() is the error function. This expression reduces to the CDF of the half-normal distribution when μ = 0.
The mean of the folded distribution is then
or
where is the normal cumulative distribution function:
The variance then is expressed easily in terms of the mean:
Both the mean (μ) and variance (σ2) of X in the original normal distribution can be interpreted as the location and scale parameters of Y in the folded distribution.
The mode of the distribution is the value of for which the density is maximised. In order to find this value, we take the first derivative of the density with respect to and set it equal to zero. Unfortunately, there is no closed form. We can, however, write the derivative in a better way and end up with a non-linear equation
Tsagris et al. (2014) saw from numerical investigation that when , the maximum is met when , and when becomes greater than , the maximum approaches . This is of course something to be expected, since, in this case, the folded normal converges to the normal distribution. In order to avoid any trouble with negative variances, the exponentiation of the parameter is suggested.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants traitent des observations entachées d'incertitude de manière rigoureuse. Ils maîtrisent les principales méthodes de compensation des mesures et d'estimation des paramètres. Ils appliquen
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution. Let follow an ordinary normal distribution, . Then, follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero. Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by where .
In probability theory and statistics, the noncentral chi-squared distribution (or noncentral chi-square distribution, noncentral distribution) is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is (perhaps asymptotically) a chi-squared distribution; important examples of such tests are the likelihood-ratio tests. Let be k independent, normally distributed random variables with means and unit variances.
Explores model selection criteria like AIC, BIC, and Cp in statistics for data science.
Covers Cramer's theorem and Hoeffding's inequality in the context of the large deviations principle.
Presents the proof of the Central Limit Theorem using Lindeberg's principle.
We develop an exchange rate target zone model with finite exit time and non-Gaussian tails. We show how the tails are a consequence of time-varying investor risk aversion, which generates mean-preserving spreads in the fundamental distribution. We solve ex ...
Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions. The presented data from literature and prev ...
The wave functions of a disordered two-dimensional electron gas at the quantum-critical Anderson transition are predicted to exhibit multifractal scaling in their real space amplitude. We experimentally investigate the appearance of these characteristics i ...