Vehicle emissions control is the study of reducing the emissions produced by motor vehicles, especially internal combustion engines.
Emissions of many air pollutants have been shown to have variety of negative effects on public health and the natural environment. Emissions that are principal pollutants of concern include:
Hydrocarbons (HC) – A class of burned or partially burned fuel, hydrocarbons are toxins. Hydrocarbons are a major contributor to smog, which can be a major problem in urban areas. Prolonged exposure to hydrocarbons contributes to asthma, liver disease, lung disease, and cancer. Regulations governing hydrocarbons vary according to type of engine and jurisdiction; in some cases, "non-methane hydrocarbons" are regulated, while in other cases, "total hydrocarbons" are regulated. Technology for one application (to meet a non-methane hydrocarbon standard) may not be suitable for use in an application that has to meet a total hydrocarbon standard. Methane is not directly toxic, but is more difficult to break down in fuel vent lines and a charcoal canister is meant to collect and contain fuel vapors and route them either back to the fuel tank or, after the engine is started and warmed up, into the air intake to be burned in the engine.
Volatile organic compounds (VOCs) – Organic compounds which typically have a boiling point less than or equal to 250 °C; for example chlorofluorocarbons (CFCs) and formaldehyde.
Carbon monoxide (CO) – A product of incomplete combustion, inhaled carbon monoxide reduces the blood's ability to carry oxygen; overexposure (carbon monoxide poisoning) may be fatal. (Carbon monoxide persistently binds to hemoglobin, the oxygen-carrying chemical in red blood cells, where oxygen (O2) would temporarily bind. The bonding of CO excludes O2 and also reduces the ability of the hemoglobin to release already-bound oxygen, on both counts rendering the red blood cells ineffective. Recovery is by the slow release of bound CO and the body's production of new hemoglobin - a healing process - so full recovery from moderate to severe [but nonfatal] CO poisoning takes hours or days.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Présentation des bases des études d'impact, du contexte et des outils d'évaluation de chacun des sujets et des chapitres. Illustration par de nombreux cas réels, et par un travail de groupe. Discussio
A catalytic converter is an exhaust emission control device that converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves. The first widespread introduction of catalytic converters was in the United States automobile market. To comply with the U.S.
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume. It is a major component of motor vehicle emissions (and from stationary internal combustion engines), which can also include crankcase blow-by and evaporation of unused gasoline.
Explores clean cook stoves to improve indoor air quality and ventilation through ongoing research and resources for involvement.
Explores the production processes of gaseous and liquid fuels in oil and coal refineries, emphasizing catalysis for emission control and energy production.
Covers environmental legislation, sources, principles, and application to construction activities.
,
Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
In traditional power delivery networks, the on-chip supply voltage is provided by board-level converters. Due to the significant distance between the converter and the load, variations in the load current are not effectively managed, producing a significan ...
Globally, billions of people burn fuels indoors for cooking and heating, which contributes to millions of chronic illnesses and premature deaths annually. Additionally, residential burning contributes significantly to black carbon emissions, which have the ...