Concept

Ordre dense

La notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas. Cantor a démontré que tout ensemble totalement ordonné, dénombrable et dense en lui-même sans maximum ni minimum est isomorphe à l'ensemble Q des rationnels muni de l'ordre usuel : voir l'article « Théorème de Cantor (théorie des ordres) ». C'est notamment le cas, toujours pour l'ordre usuel, de Q*, de Q*, de Q ⋂ ]0,1[, de l'ensemble des nombres dyadiques, ou encore celui des nombres réels algébriques. Un sous-ensemble X d'un ensemble ordonné (E, ≤) est dit dense dans E si, pour tout couple (x, y) d'éléments de E tels que x < y, il existe un élément z de X tel que x < z < y (donc une infinité). La notion d'ensemble ordonné dense en lui-même n'est que le cas particulier où X = E. Dans le segment réel [0, 1] (muni de l'ordre usuel), l'intervalle ouvert ]0, 1[ est dense. De même (par isomorphisme d'ensembles ordonnés) dans la droite réelle achevée = {–∞}∪R∪{+∞}, R est dense. Dans tout corps archimédien, le sous-ensemble Q des rationnels est dense et dans tout corps totalement ordonné L, si un sous-corps propre K ⊊ L est dense alors son complémentaire L\K aussi. (Ainsi, Q et R\Q sont denses dans le corps R des réels.) Si E est un ensemble ordonné, les intervalles ouverts forment une prébase d'une topologie appelée « topologie de l'ordre ». Dans ce cas, un sous-ensemble X de E qui est dense au sens précédent de la relation d'ordre est bien dense dans E au sens de cette topologie. Cependant, la réciproque est fausse : un ensemble ordonné est toujours dense dans lui-même pour la topologie de l'ordre (comme pour n'importe quelle topologie) sans être nécessairement dense en lui-même pour sa relation d'ordre, comme le montre l'exemple de Z pour l'ordre usuel.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.