Many countries and territories have installed significant solar power capacity into their electrical grids to supplement or provide an alternative to conventional energy sources. Solar power plants use one of two technologies: Photovoltaic (PV) systems use solar panels, either on rooftops or in ground-mounted solar farms, converting sunlight directly into electric power. Concentrated solar power (CSP, also known as "concentrated solar thermal") plants use solar thermal energy to make steam, that is thereafter converted into electricity by a turbine. The worldwide growth of photovoltaics is extremely dynamic and varies strongly by country. In April 2022, the total global solar power capacity reached 1 TW. In 2022, the leading country for solar power was China, with about 390 GW, accounting for nearly two-fifths of the total global installed solar capacity. As of 2022, there are more than 40 countries around the world with a cumulative PV capacity of more than one gigawatt, including Canada, South Africa, Chile, the United Kingdom, South Korea, Austria, Argentina and the Philippines. The top installers of 2022 included China, the United States, and India. Japan, Brazil, the Netherlands, France, Mexico and Germany were also among the top installers of 2022. The available solar PV capacity in Australia is now sufficient to supply more than 15% of the nation's electrical energy while Honduras, Italy, Spain, Germany and Greece can produce between 9% and 14% of their respective annual domestic electricity consumption. After an almost two decade long hiatus, the deployment of CSP resumed in 2007. However, the design for several new projects is being changed to cheaper photovoltaics. Most operational CSP stations are located in Spain and the United States, while large solar farms using photovoltaics are being constructed in an expanding list of geographic regions. Other countries, like Finland, Denmark, Israel, Ukraine and Algeria, can also produce any portions of their electricity consumption.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
ME-468: Solar energy conversion
The course will provide fundamentals and technological details of solar energy conversion devices and systems, including 1) solar fuels by photoelectrochemistry, photocatalysis, and solar thermochemis
ENG-410: Energy supply, economics and transition
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
MICRO-565: Fundamentals & processes for photovoltaic devices
The objective of this lecture is to give an in-depth understanding of the physics and manufacturing processes of photovoltaic solar cells and related devices (photodetectors, photoconductors). The pri
Show more
Related MOOCs (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz