In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the "quality" or durability of oscillation. Electrical potential energy is dissipated in all dielectric materials, usually in the form of heat. In a capacitor made of a dielectric placed between conductors, the typical lumped element model includes a lossless ideal capacitor in series with a resistor termed the equivalent series resistance (ESR) as shown below. The ESR represents losses in the capacitor. In a good capacitor the ESR is very small, and in a poor capacitor the ESR is large. However, ESR is sometimes a minimum value to be required. Note that the ESR is not simply the resistance that would be measured across a capacitor by an ohmmeter. The ESR is a derived quantity with physical origins in both the dielectric's conduction electrons and dipole relaxation phenomena. In dielectric only one of either the conduction electrons or the dipole relaxation typically dominates loss. For the case of the conduction electrons being the dominant loss, then where is the dielectric's bulk conductivity, is the lossless permittivity of the dielectric, and is the angular frequency of the AC current i, is the lossless capacitance. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or When representing the electrical circuit parameters as vectors in a complex plane, known as phasors, a capacitor's dissipation factor is equal to the tangent of the angle between the capacitor's impedance vector and the negative reactive axis, as shown in the adjacent diagram. This gives rise to the parameter known as the loss tangent tan δ where Alternatively, can be derived from frequency at which loss tangent was determined and capacitance Since the in a good capacitor is usually small, , and is often expressed as a percentage.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
ME-467: Turbulence
This course provides an introduction to the physical phenomenon of turbulence, its probabilistic description and modeling approaches including RANS and LES. Students are equipped with the basic knowle
MATH-106(f): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Show more
Related lectures (32)
Turbulent Flow Modeling
Explores Reynolds decomposition, RANS equations, k-epsilon model, and turbulent energy evolution.
Phenomenology of Energy Cascade
Explores the physical interpretation of energy cascade and diffusion in turbulent flows.
Kolmogorov K41 Theory
Covers the Kolmogorov K41 theory, energy transport, and turbulence energy spectrum.
Show more
Related publications (80)

Highly dispersed nanomaterials in polymer matrix via aerosol-jet-based multi-material 3D printing

Michael James Henry Smith

Polymer-based nanocomposites emerged in the 1960s as a groundbreaking approach to advanced materials. By incorporating robust, durable, and multifunctional nanomaterials into a polymer matrix, the performance of nanocomposites has significantly surpassed t ...
Elsevier2024

Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 10(9) at Room Temperature

Tobias Kippenberg, Guanhao Huang, Alberto Beccari, Amirali Arabmoheghi, Nils Johan Engelsen, Sergey Fedorov

Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy, and quantum control of mechanical oscillators via optomechanics and electromechanics. The mechanical quali ...
AMER PHYSICAL SOC2022

Hierarchical tensile structures with ultralow mechanical dissipation

Tobias Kippenberg, Alberto Beccari, Amirali Arabmoheghi, Nils Johan Engelsen, Sergey Fedorov

Structural hierarchy is found in myriad biological systems and has improved man-made structures ranging from the Eiffel tower to optical cavities. In mechanical resonators whose rigidity is provided by static tension, structural hierarchy can reduce the di ...
NATURE PORTFOLIO2022
Show more
Related concepts (3)
Capacitor
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
Dielectric loss
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). It can be parameterized in terms of either the loss angle δ or the corresponding loss tangent tan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.
Permittivity
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.
Related MOOCs (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.