In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). It can be parameterized in terms of either the loss angle δ or the corresponding loss tangent tan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.
For time-varying electromagnetic fields, the electromagnetic energy is typically viewed as waves propagating either through free space, in a transmission line, in a microstrip line, or through a waveguide. Dielectrics are often used in all of these environments to mechanically support electrical conductors and keep them at a fixed separation, or to provide a barrier between different gas pressures yet still transmit electromagnetic power. Maxwell’s equations are solved for the electric and magnetic field components of the propagating waves that satisfy the boundary conditions of the specific environment's geometry. In such electromagnetic analyses, the parameters permittivity ε, permeability μ, and conductivity σ represent the properties of the media through which the waves propagate. The permittivity can have real and imaginary components (the latter excluding σ effects, see below) such that
If we assume that we have a wave function such that
then Maxwell's curl equation for the magnetic field can be written as:
where ε′′ is the imaginary component of permittivity attributed to bound charge and dipole relaxation phenomena, which gives rise to energy loss that is indistinguishable from the loss due to the free charge conduction that is quantified by σ. The component ε′represents the familiar lossless permittivity given by the product of the free space permittivity and the relative real/absolute permittivity, or
The loss tangent is then defined as the ratio (or angle in a complex plane) of the lossy reaction to the electric field E in the curl equation to the lossless reaction:
Solution for the electric field of the electromagnetic wave is
where:
ω is the angular frequency of the wave, and
λ is the wavelength in the dielectric material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to the physical phenomenon of turbulence, its probabilistic description and modeling approaches including RANS and LES. Students are equipped with the basic knowle
The properties of crystals and polycrystalline (ceramic) materials including electrical, thermal and electromechanical phenomena are studied in connection with structures, point defects and phase rela
In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the "quality" or durability of oscillation. Electrical potential energy is dissipated in all dielectric materials, usually in the form of heat. In a capacitor made of a dielectric placed between conductors, the typical lumped element model includes a lossless ideal capacitor in series with a resistor termed the equivalent series resistance (ESR) as shown below.
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material.
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field. Permittivity is a material's property that affects the Coulomb force between two point charges in the material. Relative permittivity is the factor by which the electric field between the charges is decreased relative to vacuum.
Polymer-based nanocomposites emerged in the 1960s as a groundbreaking approach to advanced materials. By incorporating robust, durable, and multifunctional nanomaterials into a polymer matrix, the performance of nanocomposites has significantly surpassed t ...
Elsevier2024
Dielectric elastomer actuators (DEA) are elastic capacitors composed of a pair of compliant electrodes and a soft dielectric elastomer film sandwiched in between. This kind of stretchable capacitors can be actuated when charged, can generate electricity fr ...
Dielectric elastomer transducers are elastic capacitors that respond to mechanical or electrical stress. They can be used in applications such as millimeter-sized soft robots and harvesters of the energy contained in ocean waves. The dielectric component o ...