Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Köthe conjectureIn mathematics, the Köthe conjecture is a problem in ring theory, open . It is formulated in various ways. Suppose that R is a ring. One way to state the conjecture is that if R has no nil ideal, other than {0}, then it has no nil one-sided ideal, other than {0}. This question was posed in 1930 by Gottfried Köthe (1905–1989). The Köthe conjecture has been shown to be true for various classes of rings, such as polynomial identity rings and right Noetherian rings, but a general solution remains elusive.
Nil idealIn mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture.
Glossary of ring theoryRing theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory. For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras.
NilpotentIn mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that . The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. This definition can be applied in particular to square matrices. The matrix is nilpotent because . See nilpotent matrix for more. In the factor ring , the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9.
Ring theoryIn algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Jacobson radicalIn mathematics, more specifically ring theory, the Jacobson radical of a ring is the ideal consisting of those elements in that annihilate all simple right -modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by or ; the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring.
Artinian ringIn mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields.