In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that .
The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras.
This definition can be applied in particular to square matrices. The matrix
is nilpotent because . See nilpotent matrix for more.
In the factor ring , the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9.
Assume that two elements and in a ring satisfy . Then the element is nilpotent as An example with matrices (for a, b): Here and .
By definition, any element of a nilsemigroup is nilpotent.
No nilpotent element can be a unit (except in the trivial ring, which has only a single element 0 = 1). All nilpotent elements are zero divisors.
An matrix with entries from a field is nilpotent if and only if its characteristic polynomial is .
If is nilpotent, then is a unit, because entails
More generally, the sum of a unit element and a nilpotent element is a unit when they commute.
The nilpotent elements from a commutative ring form an ideal ; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element in a commutative ring is contained in every prime ideal of that ring, since . So is contained in the intersection of all prime ideals.
If is not nilpotent, we are able to localize with respect to the powers of : to get a non-zero ring . The prime ideals of the localized ring correspond exactly to those prime ideals of with . As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent is not contained in some prime ideal. Thus is exactly the intersection of all prime ideals.
A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of ring are precisely those that annihilate all integral domains internal to the ring (that is, of the form for prime ideals ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which xy = 0 for all x and y. This article refers to the one-element ring.) In the , the zero ring is the terminal object, whereas the ring of integers Z is the initial object. The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and · defined such that 0 + 0 = 0 and 0 · 0 = 0.
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R^× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit).
In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which shares the same multiplicative identity as R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R).
We generalize the class vectors found in neural networks to linear subspaces (i.e., points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables simultaneous improvement in accuracy and feature transferability. In GCR, e ...
We show that for a surjective, separable morphism f of smooth projective varieties over a field of positive characteristic such that f(*) OX congruent to O-Y subadditivity of Kodaira dimension holds, provided the base is of general type and the Hasse-Witt ...
Ulam asked whether every connected Lie group can be represented on a countable structure. This is known in the linear case. We establish it for the first family of non-linear groups, namely in the nilpotent case. Further context is discussed to illustrate ...