Related concepts (42)
Eisenstein integer
In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form where a and b are integers and is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set.
Perrin number
In mathematics, the Perrin numbers are defined by the recurrence relation P(n) = P(n − 2) + P(n − 3) for n > 2, with initial values P(0) = 3, P(1) = 0, P(2) = 2. The sequence of Perrin numbers starts with 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, ... The number of different maximal independent sets in an n-vertex cycle graph is counted by the nth Perrin number for n > 1. This sequence was mentioned implicitly by Édouard Lucas (1876). In 1899, the same sequence was mentioned explicitly by François Olivier Raoul Perrin.
Babylonian cuneiform numerals
Assyro-Chaldean Babylonian cuneiform numerals were written in cuneiform, using a wedge-tipped reed stylus to make a mark on a soft clay tablet which would be exposed in the sun to harden to create a permanent record. The Babylonians, who were famous for their astronomical observations, as well as their calculations (aided by their invention of the abacus), used a sexagesimal (base-60) positional numeral system inherited from either the Sumerian or the Akkadian civilizations.
Chinese numerology
Some numbers are believed by some to be auspicious or lucky (吉利, ) or inauspicious or unlucky (不吉, ) based on the Chinese word that the number sounds similar to. The numbers 2, 3, 6, and 8 are generally considered to be lucky, while 4 is considered unlucky. These traditions are not unique to Chinese culture, with other countries with a history of Han characters also having similar beliefs stemming from these concepts. The number 0 (零, ) is the beginning of all things and is generally considered a good number, because it sounds like 良 (pinyin: liáng), which means 'good'.
Prime quadruplet
In number theory, a prime quadruplet (sometimes called prime quadruple) is a set of four prime numbers of the form {p,\ p+2,\ p+6,\ p+8}. This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4. The first eight prime quadruplets are: {5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089} All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some integer n.
Pell number
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
Maya numerals
The Maya numeral system was the system to represent numbers and calendar dates in the Maya civilization. It was a vigesimal (base-20) positional numeral system. The numerals are made up of three symbols: zero (a shell), one (a dot) and five (a bar). For example, thirteen is written as three dots in a horizontal row above two horizontal bars; sometimes it is also written as three vertical dots to the left of two vertical bars. With these three symbols, each of the twenty vigesimal digits could be written.
9
9 (nine) is the natural number following and preceding . Hindu–Arabic numeral system Circa 300 BCE, as part of the Brahmi numerals, various Indians wrote a digit 9 similar in shape to the modern closing question mark without the bottom dot. The Kshatrapa, Andhra and Gupta started curving the bottom vertical line coming up with a -look-alike. The Nagari continued the bottom stroke to make a circle and enclose the 3-look-alike, in much the same way that the sign @ encircles a lowercase a.
Arabic numerals
Arabic numerals are the ten symbols most commonly used to write numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The term often implies a decimal number, in particular when contrasted with Roman numerals, however the symbols are also used for writing numbers in other systems such as octal, and for writing identifiers such as computer symbols, trademarks, or license plates. They are also called Western Arabic numerals, Ghubār numerals, Hindu-Arabic numerals, Western digits, Latin digits, or European digits.
Safe and Sophie Germain primes
In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.