Summary
In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat. In Riemannian geometry, Shing-Tung Yau's resolution of the Calabi conjecture produced a number of Ricci-flat metrics on Kähler manifolds. A pseudo-Riemannian manifold is said to be Ricci-flat if its Ricci curvature is zero. It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its Einstein tensor is zero. Ricci-flat manifolds are one of three special types of Einstein manifold, arising as the special case of scalar curvature equaling zero. From the definition of the Weyl curvature tensor, it is direct to see that any Ricci-flat metric has Weyl curvature equal to Riemann curvature tensor. By taking traces, it is straightforward to see that the converse also holds. This may also be phrased as saying that Ricci-flatness is characterized by the vanishing of the two non-Weyl parts of the Ricci decomposition. Since the Weyl curvature vanishes in two or three dimensions, every Ricci-flat metric in these dimensions is flat. Conversely, it is automatic from the definitions that any flat metric is Ricci-flat. The study of flat metrics is usually considered as a topic unto itself. As such, the study of Ricci-flat metrics is only a distinct topic in dimension four and above. As noted above, any flat metric is Ricci-flat. However it is nontrivial to identify Ricci-flat manifolds whose full curvature is nonzero. In 1916, Karl Schwarzschild found the Schwarzschild metrics, which are Ricci-flat Lorentzian manifolds of nonzero curvature.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood